Reinforcement Learning

Assignment 1: Programming Task

Svetlin Penkov
School of Informatics
Feb 14, 2017
Setup

- Repository: https://github.com/ipab-rad/rl-cw1
- The README file provides lots of information
- On a DICE machine:

```bash
> git clone [https://github.com/ipab-rad/rl-cw1](https://github.com/ipab-rad/rl-cw1)
> cd rl-cw1
> python keyboard_agent.py
```
Setup on personal machine

- Install OpenCV with graphical user interface support.
 - This usually involves installing a windowing system such as GTK+, including the dev files for it, and compiling OpenCV from source.

- Install ALE by following the instructions
 - https://github.com/mgbellemare/Arcade-Learning-Environment
SSH into DICE from personal machine

Remember to change to your student number
> ssh -X sNNNNNNNN@student.ssh.inf.ed.ac.uk

Enter Dice password and SSH again
> ssh -X student.login

> git clone https://github.com/ipab-rad/rl-cw1
> cd rl-cw1/
> python keyboard_agent.py
Running the Keyboard Agent
The Enduro game

Opponents
Agent
Distance travelled
Number of cars left to pass

Number of cars left to pass
Distance travelled
Agent
Opponents
Game dynamics

Actions:
Accelerate, Brake, Left, Right

Reward:
+1 if agent passes by a car
-1 if opponent passes by the agent

Collisions:
When a collision occurs the agent’s velocity is decreased which may lead to negative reward.
Game discretisation
Class Hierarchy

- Any agent that you write should be derived from the Agent class
- The Agent class implements key functions and provides an interface for the implementation of specific agents
- Specific agents that you will use are the KeyboardAgent, RandomAgent, and QAgent.
The Agent class

def run(self, learn, episodes) -> None

def getActionsSet(self) -> [Action.ACCELERATE, Action.BREAK, Action.RIGHT, Action.LEFT]

def move(self, action) -> reward
The Agent subclasses

def initialise(self, grid)
def act(self)
def sense(self, grid)
def learn(self)
def callback(self, learn, episode, iteration)
Let’s explore the source code...