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Example	Applica,on:	Sampling	
Spa,otemporal	Fields	
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Ques,ons	for	Ocean	Sampling	

•  How	to	represent	the	objec,ve	that	the	goal	of	mo,on	
planning	is	to	acquire	informa,on	which	is	then	used	in	
model	learning?	

•  Concretely,	how	to	decide	where	and	when	to	sample	on	the	
basis	of	this?	
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Example	Problem:	Preference	Elicita,on	
Luggage Capacity? 
Two Door? Cost? 
Engine Size? 
Color? Options? 

Shopping for a Car: 
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Preference	Elicita,on	Problem	
	
…	the	process	of	determining	a	user’s	preferences/u,li,es	to	
the	extent	necessary	to	make	a	decision	on	her	behalf	

•  Issues:	
–  preferences	vary	widely	
–  large	(mul,-aTribute)	outcome	spaces	
–  quan,ta,ve	u,li,es	(the	“numbers”)	difficult	to	assess	

•  Preference	elicita,on	can	be	posed	as	a	POMDP	
–  Let	us	try	to	formulate	the	state-ac,on-observa,on	space…	
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Plan	for	This	Lecture	

1.  A	look	(recap)	at	what	Bayesian	upda,ng	of	model	
parameters	achieves	

2.  Informa,on	acquisi,on	problems	and	the	value	of	
informa,on	(VoI)	

3.  Policies	based	on	informa,on	gain,	e.g.,	for	robots	sampling	
in	a	naviga,on	seang	
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Bayesian	Upda,ng	
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Recap	of	Background	

•  Learning	problem:	probabilis,c	statement	of	what	we	believe	
about	parameters	that	characterise	system	behaviours	

•  Focus	is	on	uncertainty	about	performance:	
–  Choice:	e.g.,	of	person,	technology	
–  Design:	e.g.,	policies	for	running	business	opera,ons	
–  Policy:	e.g.,	when	to	sell	an	asset,	maintenance	decisions	

•  Beliefs	are	influenced	by	observa,ons	we	make	
•  Two	key	ways	of	thinking	about	learning	problems:	

frequen,st	and	Bayesian	
•  Bayesian:	start	with	ini,al	beliefs	regarding	parameters	and	

combine	prior	with	measurements	to	compute	posteriors	
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Key	Ideas	in	Bayesian	Models	

•  Begin	with	a	prior	distribu,on	over	unknown	parameter	µ	
•  Any	number	whose	value	is	unknown	is	a	random	variable	
•  Distribu,on	of	the	random	variable	~	our	belief	about	how	

likely	µ	is	to	take	on	certain	values	

•  Bayesian	perspec,ve	is	well	suited	to	informa,on	collec,on	
•  We	always	start	with	some	sort	of	prior	knowledge	or	history	
•  More	important	is	the	conceptual	framework	that	there	exists	

some	truth	that	we	are	trying	to	discover	
•  Op,mal	learning:	learn	µ	as	efficiently	as	possible	
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Updates	for	Independent	Beliefs	

•  Consider	a	random	variable,	e.g.,	observa,on	W,	normally	
distributed.	We	can	write	its	variance	and	precision	as,	

•  Having	seen	n	observa,ons,	we	believe	mean	of	µ	is	θn	and	
variance	is	

•  Aker	observing	the	next	measurement	we	update	to,	
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Updates	for	Independent	Beliefs	

•  We	could	combine	these	into	the	more	compact	form,	

•  Now,	consider	the	variance	of	the	form,	

•  This	is	the	variance,	given	that	we	have	collected	n	
measurements	already,	so	the	only	random	variable	at	this	
point	is	Wn+1.	Also,	think	of	it	as	change	in	variance	of	θn.		
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✓n+1 = (�n+1)
�1(�n✓n + �WWn+1)

V arn[·] = V ar[·|W1,W2, ...,Wn]

�̃2
n = V arn[✓n+1 � ✓n]



Updates	for	Independent	Beliefs	

•  We	could	also	write	θn+1	in	a	different	way	by	defining	the	
variable,	

•  This	is	a	random	variable	only	because	we	have	not	yet	
observed	Wn+1.	

•  So	that	we	have	the	update,	
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Z =
✓n+1 � ✓n

�̃n

✓n+1 = ✓n + �̃nZ



What	Happens	to	Variance		
aker	a	Measurement	

V ar(µ) = E[µ2]� (E[µ])2

= E(µ2)� E[(E[µ|W ])2] + E[(E[µ|W ])2]� (E[µ])2

= E[E[µ2|W ]� (E[µ|W ])2] + E[(E[µ|W ])2]� (E[E[µ|W ]])2

= E[V ar(µ|W )] + V ar[E(µ|W )]
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E[V ar(µ|W )] = V ar(µ)� V ar(E[µ|W ])

i.e., variance after measurement will, on average, always be smaller 
than the original variance. The last term could be zero (if W is irrelevant), 
but with a sensible signal this is the benefit to measurements. 



Informa,on	Acquisi,on	and	VoI	

21/03/2017	 14	



Informa,on	Acquisi,on	

•  We	want	to	understand	the	“economics	of	informa,on”	

•  Cost	of	informa,on	is	highly	problem	dependent	

•  Benefits	of	informa,on	can	oken	be	captured	using	models	
that	combine	the	issues	of	uncertainty	in	the	context	of	
simple	decision	problems	

•  We	will	look	at	a	simple	problem	to	illustrate	key	ideas	
regarding	these	benefits	
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Example:	Simple	Game	as	a	Decision	Tree	

•  We	need	to	decide	whether	
to	first	acquire	a	signal	that	
provides	informa,on	into	
the	probability	of	winning	

•  Illustrated	in	decision	tree	
•  Game	has	two	outcomes:	

–  If	we	win	(“W”),	we	receive	
reward	R 

–  If	we	lose	(“L”),	we	lose	-1	
–  Lack	of	informa,on	is	the	

informa,on	state	“N”	
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Expected	Value	

•  Without	any	informa,on	signal	(“N”),	probability	of	winning	is	
known	to	be	p 

•  Expected	value	is,	

–  where	we	assume	we	will	not	play	if	expected	value	is	nega,ve	
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E[V |N ] = max{0, pR� (1� p)}

Remark	on	nota0on:	
Unlike in our previous discussions where V represented value as in 
expectation of discounted return, here value will stand for a reward 
at the end of the game (following convention in litt. on this topic) 



Informa,ve	Signal	

•  Before	we	play	the	game,	we	have	the	op,on	of	acquiring	an	
informa,on	signal	S	(e.g.,	purchasing	a	report	or	checking	
informa,on	on	the	internet)	

•  The	signal	may	be	good	(“g”)	or	bad	(“b”)	
•  We	assume	that	this	signal	will	correctly	predict	the	outcome	

of	this	game	with	probability	q,	i.e.,	
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P [S = g|W ] = P [S = b|L] = q

We	would	like	to	understand:	
•  the	value	of	purchasing	the	signal	(elementary	informa,on	

acquisi,on	problem)	
•  the	value	of	the	quality	of	signal,	represented	by	probability	q 



Condi,onal	Value	

•  We	first	need	to	understand	how	the	signal	changes	the	
expected	payoff	from	the	game.	

•  Condi,onal	value	of	the	game	given	the	signal	is,	

•  This	equa,on	captures	our	ability	to	observe	the	signal,	and	
then	decide	whether	we	want	to	play	the	game	or	not.	

•  If	the	signal	is	bad,	expected	winnings	are,	

21/03/2017	 19	

E[V |S = g] = max{0, R.P [W |S = g]� P [L|S = g]}

E[V |S = b] = max{0, R.P [W |S = b]� P [L|S = b]}



Decision	to	Acquire	

•  We	next	need	to	find	the	value	of	the	game	given	that	we	
have	decided	to	acquire	the	signal,	but	before	we	know	its	
realisa,on.	This	is	given	by,	

•  For	this,	we	need	the	uncondi,onal	probabili,es:	
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E[V |S] = E[V |S = g]P [S = g] + E[V |S = b]P [S = b]

P [S = g] = P [S = g|W ]P [W ] + P [S = g|L]P [L]

P [S = g] = qp+ (1� q)(1� p)

P [S = b] = P [S = b|W ]P [W ] + P [S = b|L]P [L]

P [S = g] = (1� q)p+ q(1� p)



Condi,onal	Probability	of	Win/Loss		
Given	the	Outcome	of	Signal	

•  Use	Bayes	theorem	to	write,	

•  Correspondingly,	for	the	bad	signal,	
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P [W |S = g] =
P [W ]P [S = g|W ]

P [S = g]

P [W |S = g] =
pq

qp+ (1� q)(1� p)

P [W |S = b] =
P [W ]P [S = b|W ]

P [S = b]

P [W |S = g] =
p(1� q)

(1� q)p+ q(1� p)

P [L|S = g] = 1� P [W |S = g], etc.



Value	of	the	Signal	
•  Let	S	represent	the	decision	to	acquire	the	signal	before	we	

know	the	outcome	of	the	signal.	
•  Expected	value	of	the	game	given	that	we	have	chosen	to	

acquire	the	signal	is,	

21/03/2017	 22	

E[V |S] = E[V |S = g]P [S = g] + E[V |S = b]P [S = b]

E[V |S] = max{0, RP [W |S = g]� P [L|S = g]}(qp+ (1� q)(1� p))+

max{0, RP [W |S = b]� P [L|S = b]}((1� q)p+ q(1� p))

E[V |S] = max{0, R pq

qp+ (1� q)(1� p)
}(qp+ (1� q)(1� p))+

max{0, R p(1� q)

(1� q)p+ q(1� p)
� q(1� p)

(1� q)p+ q(1� p)
}+

((1� q)p+ q(1� p))



Value	of	the	Signal	
•  The	value	of	the	signal	which	depends	on	the	game	reward	R,	

the	probability	of	winning,	p,	and	the	quality	of	the	signal,	q,		
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V s(R, p, q) = E[V |S]� E[V |N ]

p = 0.5 q = 0.7 



Summary	of	the	Simple	Example	

•  We	have	computed	the	“value”	of	a	discrete	piece	of	
informa,on	in	a	stylized	seang.	
–  Note	that	the	use	of	value	here,	while	consistent	with	our	
earlier	usage,	is	slightly	simpler	nota,onally:	the	return	for	a	
single	piece	of	informa,on	does	not	need	a	discounted	sum	

•  Next,	we	turn	to	a	variant	where	we	are	allowed	to	take	
mul,ple	measurements	to	increase	the	precision	of	the	
informa,on	gained	
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Towards	Marginal	Value	of	Informa,on	

•  Imagine	that	we	have	a	choice	between	doing	nothing	(with	
reward	0)	and	choosing	a	random	reward	with	mean	µ.	

•  Assume	that	our	prior	belief	about	µ	is	normally	distributed	
with	mean	and	precision,	

•  Before	playing	the	game,	we	are	allowed	to	collect	a	series	of	
measurements,																																(we’ll	ignore	cost	for	now)	

•  We	assume	that	W	has	the	unknown	mean	µ	and	a	known	
precision		
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(✓0,�0 =
1
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W1,W2, ...,Wn
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Es,ma,ng	Reward	aker	n	Measurements	

•  If	we	choose	to	make	n	measurements,	the	precision	of	our	
es,mate	of	the	reward	would	be,	

•  The	updated	es,mate	of	our	reward	(using	a	Bayesian	model)	
would	be,	
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�n = �0 + n�W

✓n =
�0✓0 + n�W W̄n

�0 + n�W

W̄n =
1

n

nX

k=1

Wk



•  Create	a	random	variable	capturing	belief	about	reward	
•  Use	this	to	make	a	decision	about	whether	to	play	the	game	
•  Start	with	a	known	iden,ty,	

								where,		
	

•  We	can	write	the	change	in	variance	(variance	of	θn	given	
what	we	knew	before	we	took	the	n	measurements),	
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V ar(µ) = E[V ar(µ|W1, ...,Wn)] + V ar[E[µ|W1, ...,Wn]]

V ar(µ|W1, ...,Wn) =
1

�n
= (�0 + n�W )�1

E[µ|W1, ...,Wn] = ✓n

�̃2(n) = V ar(✓n) = V ar(µ)� E[
1

�n
]

�̃2(n) = V ar(✓n) =
1

�0
� 1

�n
=

1

�0
� 1

�0 + n�W



Value	of	Informa,on	

•  With	Z	deno,ng	a	standard	zero	mean	–unit	variance	normal	
distribu,on,	we	can	write,	

•  Aker	our	n	measurements,	we	are	going	to	choose	to	play	the	
game	if	we	believe	the	value	of	the	game	is	non-zero.	

•  That	value	is	

•  For	each	distribu,on	family	of	interest,	one	could	write	down	
such	an	expression	and	expand	to	get	analy,cal	formula,on	
of	VoI	
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✓n = ✓0 + �̃2(n)Z

Vn = E[max{0, ✓n}]



Example	VoI	Curves	
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The slope of these curves provide a marginal VoI 



Explora,on	with	a	Mobile	Robot	
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Explora,on	Problems	

•  Explora,on:	control	a	mobile	robot	so	as	to	maximize	
knowledge	about	the	external	world	

•  Example:	robot	needs	to	acquire	a	map	of	a	sta,c	
environment.	If	we	represent	map	as	“occupancy	grid”,	
explora,on	is	to	maximise	cumula,ve	informa,on	we	have	
about	each	grid	cell	

•  POMDPs	already	subsume	this	func,on	but	we	need	to	define	
an	appropriate	payoff	func0on	

•  One	good	choice	is	informa,on	gain:	
Reduc,on	in	entropy	of	a	robot’s	belief	as	a	func,on	of	its	
ac,ons	
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Explora,on	Heuris,cs	

•  While	POMDPs	are	conceptually	useful	here,	we	may	not	
want	to	use	them	directly	–	state/observa,on	space	is	huge	

•  We	will	instead	try	to	derive	greedy	heuris,c	based	on	the	
no,on	of	informa0on	gain.	

•  Limit	lookahead	to	just	one	explora,on	ac,on	
–  The	explora,on	ac,on	could	itself	involve	a	sequence	of	
control	ac,ons	(but	logically,	it	will	serve	as	one	
explora,on	ac,on)	

–  For	instance,	select	a	loca,on	to	explore	anywhere	in	the	
map,	then	go	there	
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Informa,on	and	Entropy	

•  The	key	to	explora,on	is	informa,on.	
•  Entropy	of	expected	informa,on:	

•  Entropy	is	at	its	maximum	for	a	uniform	distribu,on,	p 
•  Condi,onal	entropy	is	the	entropy	of	a	condi,onal	distrib.	
•  In	explora,on,	we	seek	to	minimize	the	expected	entropy	of	

the	belief	aker	execu,ng	an	ac,on	
•  So,	condi,on	on	measurement	z	and	control	u	that	define	the	

belief	state	transi,on	
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Hp(x) = �
Z

p(x) log p(x)dx �
X

x

p(x) log p(x)or 



Condi,onal	Entropy	aker	Ac,on/Observa,on	

•  With	B(b,z,u)	deno,ng	the	belief	aker	execu,ng	control	u	and	
observing	z	under	belief	b,		

•  Condi,onal	entropy	of	state	x’	aker	execu,ng	ac,on	u	and	
measuring	z	is	given	by,	

•  The	condi,onal	entropy	of	the	control	is,	
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Hb(x
0|z, u) = �

Z
B(b, z, u)(x0

) logB(b, z, u)(x0
)dx0

Hb(x
0|u) = Ez[Hb(x

0|z, u)]

=

Z Z
Hb(x

0|z, u)p(z|x0)p(x0|u, x)b(x)dzdx0dx



Greedy	Techniques	

•  Expected	informa,on	gain	lets	us	phrase	explora,on	as	a	
decision	theore,c	problem.	

•  Informa,on	Gain	is	
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Ib(u) = Hp(x)�Hb(x
0|u)

= Hp(x)� Ez[Hb(x
0|z, u)]



Greedy	Techniques	

•  If	r(x,u)	is	the	cost	of	applying	control	u	in	state	x	(trea,ng	
cost	as	nega,ve	numbers),	then	op,mal	greedy	explora,on	
for	the	belief	b	maximizes	difference	between	informa,on	
gain	and	cost,	
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⇡(b) = argmax

u
↵(Hp(x)� Ez[Hb(x

0|z, u)]) +
Z

r(x, u)b(x)dx

Expected information gain 
(Original entropy – Cond. Entropy) Expected cost 



Example:	Combining	Explora,on	and	
Mapping	

•  By	reasoning	about	control,	the	mapping	process	can	be	
made	much	more	effec,ve	

	
•  Ques,on:	Where	to	move	next	in	a	map?	
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Explora,on	Problem:	Visually	
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Map	Entropy	
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