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A Trace through an MDP

Environment: You are in state 65. You have 4 possible actions.

Agent: I'll take action 2.

Environment: You received a reinforcement of 7 units. You are now in state
15. You have 2 possible actions.

Agent: I'll take action 1.

Environment: You received a reinforcement of -4 units. You are now in state
65. You have 4 possible actions.

Agent: I'll take action 2.

Environment: You received a reinforcement of 5 units. You are now in state

44. You have 5 possible actions.

What happens if agent does not get, “You are now in state...”
Instead, all the agent gets are, “You now see these observations...”
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Partially Observed Markov Decision Processes

* In POMDPs we apply the very same idea as in MDPs.

* Since the state (x) is not observable, the agent has to make its

decisions based on the belief state which is a posterior
distribution over states.

* Let b be the belief (a probability estimate) of the agent about
the state (x) under consideration.

* POMDPs compute a value function over belief space:

Vr(b) Y Max [r(b, u) + /VT_l(b’)p(b’ | u,b) db’
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Partially Observed MDP Problem

Belief is sufficient statistic for given history
by = Pr{x|bg,ug, 01, ..., 0¢_1,Ust_1,0¢ }

Belief
state

OBSERVATIONS

WORLD + AGENT

— ACTIONS
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Some Problems to Consider

* Each belief is a probability distribution, thus, each value in a
POMDP is a function of an entire probability distribution.

* This is problematic, since probability distributions are
continuous.

* Additionally, we have to deal with the huge complexity of
belief spaces.

* For finite worlds with finite state, action, and measurement
spaces and finite horizons, however, we can effectively
represent the value functions by piecewise linear functions.
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An lllustrative Example
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Our Plan

We will work out the value function updates for this example.
The key steps will be:

1. Express payoff in terms of beliefs over states

2. Use this to write down an initial expression for m and V

3. Propagate forward an expected value of V, given one
observation from the world

4. Predict state transition upon taking an action in response
to this observation and resulting belief

5. lterate (simplifying along the way) ...



The Parameters of the Example

« The actions u, and u, are terminal actions.
- The action u, is a sensing action that potentially

leads to a state transition.

« The horizon is finite and y=1.

r(x1,u1) = —100
r(x1,up) = 4100
r(z1,u3) = —1
p(at |z, u3) = 0.2
p(z|zz,uz) = 0.8
p(z1|z1) = 0.7
p(z1lz2) = 0.3
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Payoff in POMDPs

* In MDPs, the payoff (or return) depended on the state of
the system.

* In POMDPs, however, the true state is not exactly known.

* Therefore, we compute the expected payoff (i.e., reward at
next step) by integrating over all states:

Exlr(x,u)]
/r(a:, w)p(x) dz

p1 r(x1,u) + po r(zo, u)

r(b,u)
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Payoffs in Our Example (1)

* If we are totally certain that we are in state x, and execute
action u,, we receive a reward of -100

* If, on the other hand, we definitely know that we are in x, and
execute u,, the reward is +100.

 |n between itis the linear combination of the extreme values
weighted by the probabilities

r(b,uy1) = —100p1 + 100 p>
— _100p; 4+ 100 (1 —py)
r(b,up) = 100p; —50 (1 —p;1)

T(ba ’LL3) —1
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Payoffs in Our Example (2)
(b, u1) r(b, u2)
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The Resulting Policy for T=1

* Given we have a finite POMDP with T=1, we would use V,(b)
to determine the optimal policy.

* In our example, the optimal policy for T=1is

(

uy if p1 <
m1(b) = A

~Nw ~NWw

\uz if p1 >

e This is the upper thick graph in the diagram.

07/03/2017 13



Piecewise Linearity, Convexity

* The resulting value function V,(b) is the maximum of the three
functions at each point

V1 (b) max r(b,u)

[ —100p; +100 (1 —p1)
max<¢ 100p; —50 (1 —pq)
—1

Y

* Itis piecewise linear and convex.
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Pruning

* If we carefully consider V,(b), we see that only the first two

components contribute.
 The third component can therefore safely be pruned away

from V(D).

_ —100 p; +100 (1 —p1)
Vi) = max{ 100p; 50 (1 - p1)



Increasing the Time Horizon

« Assume the robot can make an observation before
deciding on an action.
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—-100
0
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Increasing the Time Horizon

* Assume the robot can make an observation before deciding on
an action.

* Suppose the robot perceives z, for which
p(z, | x,)=0.7 and p(z,| xy=0.3].
* Given the observation z;, we update the belief using Bayes rule.

0.7
pvl — pl
p(z,)
0.3(1 -
va — ( pl)
p(z,)

p(z)=0.7p, +0.3(1-p,) = 0.4p, +0.3
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Update relation:
b (blz,)

X4

Value Function

V1 (b) 100y

S0}

-100
0
V,(blz;) 10
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Increasing the Time Horizon

Assume the robot can make an observation before deciding on
an action.

Suppose the robot perceives z, for which
bz, | x,)=0.7 and p(z,| x,)=0.3.

Given the observation z, we update the belief using Bayes rule.
Thus V,(b | z,) is given by

( . ].C)() . ().-7']?1 '+"].C)() . 0.3 (:1'——]?]_) )

p(z1) p(z1)
Vi(b | z1) = maxy >
]-c)() . ().-7']?1 ___55() . 0.3 (:l'——]?]_)
\ p(z1) p(z1) )

1 —70p1 +30 (1 —p1)
p(z1) max{ 70p1 —15(1—p1) }
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Expected Value after Measuring

 Since we do not know in advance what the next

measurement will be, we have to compute the expected
belief

V() =E.[V,(b|2)]= 2 p(z)N(b]z)

_ \ W p(z; | x)p
> p(z) ( ) )

= E V1<p(Z | xl)pl)
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Expected Value after Measuring

 Since we do not know in advance what the next

measurement will be, we have to compute the expected
belief

V1(b) Ex[V1(b] 2)]

2
= > () Vi(b] z)
i=1

—70p1 +30 (1 —p1)
MaxXx
{ 70p; —15(1 —p1)

+max{ —30p;1 470 (1 —p1) }

30p; —35(1—p1)
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Resulting Value Function

* The four possible combinations yield the following function
which then can be simplified and pruned.

( —70p; +30(1—p1) —30p1 +70(1—p1) )
—70p; +30(1—-p1) +30p; —35(1—p;1)
+70p; —-15(1—-p1) —30p; +70(1—p1)
| +70p1 —-15(1—p1) +30p; —35(1—p1) |

( —100p; +100 (1 —pq) }

V1(b) max <

= maxs +40p; 4551 —p1)
| +100p; =50 (1 —p1)
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Value Function
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State Transitions (Prediction)

* When the agent selects u; its state potentially
changes.

* When computing the value function, we have to take
these potential state changes into account.

p1 = Ez[p(z1 |z, u3)]
2

> p(z1 | 24, u3)p;
i—=1
0.2p1 + 0.8(1 — pq)

0.8 — 0.6pq
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State Transitions (Prediction)
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Resulting Value Function after executing u;

* Taking the state transitions into account, we finally
obtain.

([ —70 p1 +30 (1 —pl) —30p1 +70 (1 —pl) \

—70p; +30(1—-p1) +30p; —35(1—p1)

+70p; —-15(1 —p1) —-30p1 +70 (1 —pq1)
\ +70p; -—15 (]_ —pl) +30p1y —35 (1 _pl) J

( —100p; +100 (1 —pq1) }

V1(b)

~~

Max <

= maxq +40p; +55(1—p1)
| +100p;  —50 (1 —p1)

) [ 60p; —60 (1 —p1) \
71(bluz) = max{ 52p; +43(1—p1)
—20p; +70 (1 —p1) )

N~
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Value Function after executing u;
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Value Function for T=2

* Taking into account that the agent can either directly
perform u, or u, or first u; and then u, or u,, we obtain
(after pruning)

_ ( —100p1 +100 (1 —p1)
Vo(b) = maxy 100p1 —-50(1 —p1) ;
51p1  +42(1-p1)
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Graphical Representation of V,(b)

100N u, optimal u, optimal

S0

outcome of measurement is
important here

-50
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Deep Horizons and Pruning

 We have now completed a full backup in belief space.
* This process can be applied recursively.
* The value functions for T=10 and T=20 are:

100 100

80 80¢

60 607

40+ 40;

201 20}
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Why Pruning is Essential

* Each update introduces additional linear components to /.
 Each measurement squares the number of linear components.

* Thus, an un-pruned value function for T=20 includes more than
10~47:864 [inear functions.

At T=30 we have 10°%1.012337 |inear functions.

 The pruned value functions at T=20, in comparison, contains
only 12 linear components.

* The combinatorial explosion of linear components in the value
function are the major reason why this simple formulation of
POMDPs are impractical for most applications.
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Nature of the POMDP Value Function

* After n consecutive iterations of this optimization, the value
function consists of a set of a-vectors.

Vn — {@07 X1, ..., O‘m}

* Each a-vectoris an |S|-dim hyperplane (line in our example).
e So, the value function is of the form,

Va(b) = max a(s)b(s)
" ses
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POMDP Approximation:
Point-based Value Iteration

« Maintain a smaller set of example belief states
B ={by,bs,...}

 Propagate value function forward as before, but
use this approximate representation

* Pruning: only consider constraints that maximize
value function for at least one of the example
beliefs
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PBVI Schematic

[Source: J. Pineau et al., Point-based Value Iteration: An anytime algorithm for POMDPs, In Proc. IJCAI 2003]
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Quality of Point-based Value Iteration

Value functions for T=30

0 0.2 0.4 0.6 0.8 1

Exact value function PBVI
After pruning, 120 constraints 11 constraints .
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Example (Real) Application
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Example Application
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POMDP

Summary

POMDPs compute the optimal action in partially

observable, stochastic

For finite horizon prob

domains.

lems, the resulting value

functions are piecewise linear and convex.

In each iteration the number of linear
constraints grows exponentially.

In this form, POMDPs
successfully to small s
numbers of possible o

nave only been applied
tate spaces with small
bservations and actions.

— need to formulate

problems carefully...
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