
Reinforcement	Learning	
	

Abstrac(on	and	Hierarchy	in	RL	

Subramanian	Ramamoorthy	
School	of	Informa6cs	

	
3	March,	2017	

2	

On	the	Organiza-on	of	Behaviour	

	Consider	day	to	day	tasks	such	as	opening	a	bo;le	or	picking	up	
your	coat	from	the	stand	
–  How	would	you	tell	someone	how	to	perform	this?	
–  How	do	you	actually	get	the	job	done?	Using	what?	

03/03/2017	

An	old	idea:	
sequen&al	behavior	cannot	be	understood	as	a	chain	
of	s&mulus–response	associa&ons…	behavior	displays	
hierarchical	structure,	comprising	nested	subrou&nes.	

-	Karl	Lashley	(1951)	

On	the	Complexity	of	RL	

03/03/2017	 3	

• 	RL	agents	must	learn	from	exploring	the	environment,	
trying	out	different	ac-ons	in	different	states	
• 	Complexity	grows	quickly;	how	to	get	around?	

• 	Balance	explora-on/exploita-on	
• 	Abstrac-ons	

Example:	Instrumental	Hierarchy	

03/03/2017	 4	

[Source:	M.	Botvinick,	Hierarchical	models	of	behavior	and	prefrontal	func-on,	Trends	in	Cogni-ve	Science	12(5),	2008]	

In	Computa-onal	Terms,	Why	Hierarchy?	

•  Knowledge	transfer/injec-on	
–  Concise	encoding	of	temporally	extended	ac-ons	enables	
transfer	of	that	knowledge	to	a	new	task	needing	the	same		

•  Biases	explora-on		
–  Rather	than	search	only	at	the	finest	resolu-on,	algorithm	
can	compute	value	of	alterna-ves	at	a	larger	scale	

•  Faster	solu-ons	(even	if	model	known)	
–  Following	well	understood	principles	of	computer	science,	
hierarchy	enables	modularity	of	policies	and	models	

03/03/2017	 5	

An	Early	Idea:	Reward	Shaping	

•  The	robots’	objec-ve	is	to	
collec-vely	find	pucks	and	
bring	them	home.	

•  Represent	the	12-dim	
environment	by	state	
variables	(features?):	
–  have-puck?	
–  at-home?	
–  near-intruder?	

•  What	should	the	immediate	
reward	func-on	be?	

03/03/2017	 6	

[Source:	M.	Mataric,	Reward	Func-ons	for	Accelerated	Learning,	ICML	1994]	

Reward	Shaping	

•  If	a	reward	is	given	only	when	a	robot	drops	a	puck	at	home,	learning	
will	be	extremely	difficult.	
–  The	delay	between	the	ac-on	and	the	reward	is	large.	

•  Solu-on:	Reward	shaping	(intermediate	rewards).	
–  Add	rewards/penal-es	for	achieving	sub-goals/errors:	

•  subgoal:	grasped-puck	
•  subgoal:	dropped-puck-at-home	
•  error:	dropped-puck-away-from-home	

•  Add	progress	es-mators:	
–  Intruder-avoiding	progress	func-on	
–  Homing	progress	func-on	

•  Adding	intermediate	rewards	will	poten-ally	allow	RL	to	handle	more	
complex	problems.	

03/03/2017	 7	

Reward	Shaping	Results	

Percentage	of	policy	learnt	aher	15	minutes:	

03/03/2017	 8	

Another	Early	Idea:	Hierarchical	Algorithms		
-	Ga-ng	Mechanisms	

Hierarchical Learning (especially popular with neural network models)
• Learn the gating function
• Learn the individual behaviours
• Learn both simultaneously

*	

*Can	be	a	mul6-	
level	hierarchy.	

g	is	a	gate	

bi	is	a	
behaviour	

03/03/2017	 9	

Temporal	Abstrac-on	

•  What’s	the	issue?	
– Want	“macro”	ac-ons	(mul-ple	-me	steps)	
–  Advantages:	

•  Avoid	dealing	with	(exploring/compu-ng	values	for)	
less	desirable	states	

•  Reuse	experience	across	problems/regions	

•  What’s	not	obvious	
–  Dealing	with	the	Markov	assump-on	
–  Genng	the	calcula-ons	right	(e.g.,	stability	and	
convergence)	

03/03/2017	 10	

Semi-Markov	Decision	Processes	

03/03/2017	 11	

Semi-Markov	Decision	Processes	

•  A	generaliza-on	of	MDPs:	
	The	amount	of	-me	between	one	decision	and	the	next	is	a	
random	variable	(either	real	or	integer	valued)	

•  Treat	the	system	as	remaining	in	each	state	for	a	random	
wai-ng	-me	
–  aher	which,	transi-on	to	next	state	is	instantaneous	

•  Real	valued	case:	con-nuous	-me,	discrete	events	
•  Discrete	case:	Decisions	only	made	an	integer	mul-ple	of	an	

underlying	-me	step	

03/03/2017	 12	

Semi-Markov	Decision	Processes	

•  SMDP	is	defined	in	terms	of	
P(s’,τ|s,a):	Transi-on	probability	(τ	is	the	wai-ng	-me)	
R(s,a)	or	just	r:	Reward,	amount	expected	to	accumulate	
during	wai-ng	-me,	τ,	in	par-cular	state	and	ac-on	

	
•  Bellman	equa-on	can	then	be	wri;en	down	as,	for	all	s:	

03/03/2017	 13	

V ⇤
(s) = max

a2As

[r +
X

s0,⌧

�⌧P (s0, ⌧ |s, a)V ⇤
(s0)]

Note	the	need	to	sum	over	wai-ng	-me,	as	well.	

Semi-Markov	Decision	Processes	

•  Likewise,	we	can	write	down	the	Bellman	equa-on	for	the	
state-ac-on	value	func-on	as,	

•  So,	Dynamic	Programming	algorithms	can	be	naturally	
extended	to	the	case	of	SMDPs	as	well	

03/03/2017	 14	

Q⇤
(s, a) = r +

X

s0,⌧

�⌧P (s0, ⌧ |s, a) max

a02As

Q⇤
(s0, a0)

8s 2 S, a 2 As

Q-Learning	with	SMDPs	

•  Can	we	also	modify	sampling	based	algorithms	accordingly?		
•  Consider	the	standard	Q-learning	algorithm,	rewri;en	slightly	

in	the	following	form,	

•  If	we	write	down	the	reward	sum,	in	brackets,	for	the	en-re	
wai-ng	-me	dura-on,	then	we	will	have		

03/03/2017	 15	

Qk+1(s, a) = (1� ↵k)Qk(s, a) + ↵k[r + � max

a02As

Qk(s
0, a0)]

Qk+1(s, a) = (1� ↵k)Qk(s, a) + ↵k[rt+1 + �rt+2 + ...

+�⌧�1rt+⌧ + �⌧
max

a02As

Qk(s
0, a0)]

Case	Study:	Elevator	Dispatching	

[Crites	and	Barto,	1996]	

03/03/2017	 16	

Semi-Markov	Q-Learning	

Rt = γ krt+k+1
k=0

∞

∑ or Rt = e−βτrt+τ dτ
0

∞

∫

Con-nuous--me	problem	but	decisions	in	discrete	jumps.		
For	this	SMDP,	the	expression	for	returns	can	be	wri;en	as,	
	
	
	
	
Note	that	the	meaning	of	quan-ty	r	differs	in	the	two	expressions:	

	-	reward	at	a	discrete	-me	step	in	discrete	case	
	-	reward	“rate”	in	con-nuous	case	

	
The	nega-ve	exponen-al	has	a	similar	role	as	the	discount	
factor	as	we	have	been	using	it	so	far.	
	

03/03/2017	 17	

Semi-Markov	Q-Learning	

Q(s,a)← (1−α)Q(s,a)+α e−β τ−t1()rτ dτ + e
−β t2−t1()max

ʹa
Q(ʹs , ʹa

t1

t2

∫)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Suppose system takes action a from state s at time t1,
and next decision is needed at time t2 in state ʹs :

03/03/2017	 18	

Problem	Setup:	
Passenger	Arrival	Pa;erns	

Up-peak and Down-peak traffic

•  Not equivalent: down-peak handling capacity is much greater than up-
peak handling capacity; so up-peak capacity is limiting factor.

•  Up-peak easiest to analyse: once everyone is onboard at lobby, rest
of trip is determined. The only decision is when to open and close
doors at lobby. Optimal policy for pure case is: close doors when
threshold number on; threshold depends on traffic intensity.

•  More policies to consider for two-way and down-peak traffic.

•  We focus on down-peak traffic pattern.
03/03/2017	 19	

Various	Extant	Control	Strategies	

• Zoning: divide building into zones; park in zone when idle. Robust in
heavy traffic.

• Search-based methods: greedy or non-greedy. Receding Horizon
control.

• Rule-based methods: expert systems/fuzzy logic; from human
“experts”

• Other heuristic methods: Longest Queue First (LQF), Highest
Unanswered Floor First (HUFF), Dynamic Load Balancing (DLB)

• Adaptive/Learning methods: NNs for prediction, parameter space
search using simulation, DP on simplified model, non-sequential RL

03/03/2017	 20	

The	Elevator	Model	
(Lewis,	1991)		

Parameters:
• Floor Time (time to move one floor at max speed): 1.45 secs.
• Stop Time (time to decelerate, open and close doors, and accelerate

again): 7.19 secs.
• TurnTime (time needed by a stopped car to change directions): 1 sec.
• Load Time (the time for one passenger to enter or exit a car): a random

variable with range from 0.6 to 6.0 secs, mean of 1 sec.
• Car Capacity: 20 passengers

Discrete Event System: continuous time,
asynchronous elevator operation

Traffic Profile:
• Poisson arrivals with rates changing every 5 minutes; down-peak

03/03/2017	 21	

State	Space	
• 18 hall call buttons: 218 combinations
• positions and directions of cars: 184 (rounding to nearest floor)
• motion states of cars (accelerating, moving, decelerating,

stopped, loading, turning): 6
• 40 car buttons: 240

• Set of passengers waiting at each floor, each passenger's arrival
time and destination: unobservable. However, 18 real numbers
are available giving elapsed time since hall buttons pushed; we
discretize these.

• Set of passengers riding each car and their destinations:
observable only through the car buttons

Conservatively about 1022 sates

03/03/2017	 22	

Ac-ons	

• When moving (halfway between floors):
– stop at next floor
– continue past next floor

• When stopped at a floor:
– go up
– go down

• Asynchronous

03/03/2017	 23	

Constraints	
• A car cannot pass a floor if a passenger wants to get off

there
• A car cannot change direction until it has serviced all

onboard passengers traveling in the current direction
• Don’t stop at a floor if another car is already stopping, or

is stopped, there
• Don’t stop at a floor unless someone wants to get off

there
• Given a choice, always move up

standard

special
heuristic

Stop and Continue

03/03/2017	 24	

Performance	Criteria	

• Average wait time
• Average system time (wait + travel time)
• % waiting > T seconds (e.g., T = 60)
• Average squared wait time (to encourage fast and fair service)

Minimize:

03/03/2017	 25	

Average	Squared	Wait	Time	

Instantaneous cost, p individuals:

Define return as an integral rather than a sum (Bradtke and Duff, 1994):

rτ = wait p(τ)()
p
∑

2

e−βτrτ dτ
0

∞

∫

03/03/2017	 26	

Compu-ng	Rewards	

e−β (τ−ts)rτ dτ
0

∞

∫

Must calculate

• “Omniscient Rewards”: the simulator knows how long each
passenger has been waiting.

• “On-Line Rewards”: Assumes only arrival time of first passenger in
each queue is known (elapsed hall button time); estimate arrival
times

03/03/2017	 27	

Neural	Networks	

• 9 binary: state of each hall down button
• 9 real: elapsed time of hall down button if pushed
• 16 binary: one on at a time: position and direction of car making

decision
• 10 real: location/direction of other cars: “footprint”
• 1 binary: at highest floor with waiting passenger?
• 1 binary: at floor with longest waiting passenger?
• 1 bias unit ≡ 1

47 inputs, 20 sigmoid hidden units, 1 or 2 output units

Inputs:

03/03/2017	 28	

Elevator	Results	

03/03/2017	 29	

Op&ons	Framework	

03/03/2017	 30	

Options	example:		
Move	un-l	end	of	hallway	

Start	:	Any	state	in	the	hallway.	

Execute	:	policy	π	as	shown.	

Terminate	:	when	state	s	is	the	
end	of	hallway.	

03/03/2017	 31	

[Reference:	R.S.	Su;on,	D.	Precup,	S.	Singh,	Between	MDPs	and	Semi-MDPs:	A	framework	for	temporal	
Abstrac-on	in	reinforcement	learning,	Ar-ficial	Intelligence	Journal	112:181-211,	1999.	

Op-ons	[Su;on,	Precup,	Singh	’99]	

•  An	op-on	is	a	behaviour	defined	in	terms	of:	
	 	o	=	{	Io,	πo,	βo	}

•  	Io : Set	of	states	in	which	o	can	be	ini-ated.	
•  	πo(s)	:	Policy	(mapping	S to A)§	when	o	is	execu-ng.	
•  	βo(s)	:	Probability	that	o	terminates	in	s.	

§Can	be	a	policy	
		over	lower	level	
		op-ons.	

03/03/2017	 32	

Rooms	Example	

03/03/2017	 33	

Op-ons	Define	a	Semi-MDP	

03/03/2017	 34	

MDP	+	Op-ons	=	SMDP	

03/03/2017	 35	

Why	is	this	Useful?	

•  We	can	now	define	policy	over	op-ons	as	well:	

•  And	redefine	all	value	func-ons	appropriately:	

•  All	policy	learning	methods	discussed	so	far,	e.g.,	Value	and	
Policy	Itera-on,	can	be	defined	over	S	and	O

•  Coherent	theory	of	learning	and	planning,	with	courses	of	
ac-on	at	variable	-me	scales,	yet	at	the	same	level	

03/03/2017	 36	

µ : S ⇥O ! [0, 1]

V

µ(s), Qµ(s, o), V ⇤
O(s), Q

⇤
O(s, o)

Value	Func-ons	Over	Op-ons	

We	can	write	the	expression	for	op-mal	value	as,	

03/03/2017	 37	

V ⇤
O(s) = max

µ2Q
(O)

V µ
(s)

V

⇤
O(s) = max

o2Os

E{r
t+1 + ...+ �

k�1
r

t+k

+ �

k

V

⇤
O(st+k

)|E(o, s, t)}

V

⇤
O(s) = max

o2Os

E[r + �

k

V

⇤
O(s

0
)|E(o, s)]

k	being	the	dura-on	of	o	when	taken	in	s;	condi-oning	is	over	the	event	
that	the	op-on	is	ini-ated	at	that	state	and	-me.	

Mo-va-ons	for	Op-ons	Framework	

•  Add	temporally	extended	ac-vi-es	to	choices	available	to	RL	
agent,	without	precluding	planning	and	learning	at	finer	
grained	MDP	level	

•  Op-mal	policies	over	primi-ves	are	not	compromised	due	to	
addi-on	of	op-ons	

•  However,	if	an	op-on	is	useful,	learning	will	quickly	find	this	
out	–	prevent	prolonged	and	useless	‘flailing	about’	

	
	
PS:	If	all	op-ons	are	1-step,	you	recover	the	core	MDP	

03/03/2017	 38	

Rooms	Example	–		
Policy	within	One	Room	

03/03/2017	 39	

Time	Course	of	Use	of	Ac-on/Op-on	

03/03/2017	 40	

[Source:	M.	Botvinick,	Hierarchical	models	of	behavior	and	prefrontal	func-on,	Trends	in	Cogni-ve	Science	12(5),	2008]	

Performance	Improvement	with	Op-ons	

03/03/2017	 41	

[Source:	M.	Botvinick,	Hierarchical	models	of	behavior	and	prefrontal	func-on,	Trends	in	Cogni-ve	Science	12(5),	2008]	

Learning	Op-ons	

03/03/2017	 42	

Goal/State	Abstrac-on	

•  Why	are	these	together?	
–  Abstract	goals	typically	imply	abstract	states	

•  Makes	sense	for	classical	planning	
–  Classical	planning	uses	state	sets	
–  Implicit	in	use	of	state	variables	

•  Does	this	make	sense	for	RL?	Things	to	think	about:	
–  No	goals	
– Markov	property	issues	

03/03/2017	 43	

Automa-c	Hierarchy	Discovery	

•  Hard	in	contexts	such	as	classical	planning	

•  Within	a	single	problem:	
–  Ba;le	is	lost	if	all	states	considered	(polynomial	speedup	
at	best)	

–  If	fewer	states	considered,	when	to	stop?	

•  Across	problems	
–  Considering	all	states	OK	for	few	problems?	
–  Generalize	to	other	problems	in	class	(transfer	learning)	

•  How	best	to	measure	progress?	Remains	an	open	problem…	

03/03/2017	 44	

Bo;lenecks:	Principle	for	Op-on	Learning	

•  	Subgoals	are	created	based	on	commonali-es	across	mul-ple	
paths	to	a	solu-on	

•  Cast	the	task	of	finding	these	commonali-es	as	a	mul-ple-
instance	learning	problem	

•  	System	a;empts	to	iden-fy	a	target	concept	on	the	basis	of	
“bags”	of	instances:	posi-ve	bags	have	at	least	one	posi-ve	
instance,	while	nega-ve	bags	consist	of	all	nega-ve	instances.		

•  A	successful	trajectory	corresponds	to	a	posi-ve	bag,	where	the	
instances	are	the	agent’s	observa-ons	along	that	trajectory.		

•  A	nega-ve	bag	consists	of	observa-ons	made	over	an	
unsuccessful	trajectory.	

03/03/2017	 45	

[Reference:	A.	McGovern,	A.G.	Barto,	Accelera-ng	reinforcement	learning	through	discovery	of	useful	subgoals,	
Proc.	i-SAIRAS	2001.	

Mo-va-on	for	Bo;lenecks	

•  Agent	searches	for	bo;leneck	regions	in	observa-on	space.		
•  The	idea	of	looking	for	bo;leneck	regions	was	mo-vated	by	

studying	room-to-room	naviga-on	tasks	where	the	agent	
should	quickly	discover	the	u-lity	of	doorways	as	subgoals.	

•  IF	the	agent	can	recognize	that	a	doorway	is	a	kind	of	
bo;leneck	by	detec-ng	that	the	sensa-on	of	being	in	the	
doorway	always	occurred	somewhere	on	successful	
trajectories		
–  BUT	not	always	on	unsuccessful	ones,		

•  THEN	it	can	create	an	op-on	to	reach	the	doorway.		

03/03/2017	 46	

Bo;lenecks	-	Computa-onally	

•  If	the	agent	uses	some	form	of	randomness	to	select	exploratory	
primi-ve	ac-ons,	it	is	likely	to	remain	within	the	more	strongly	
connected	regions	of	the	state	space.		

•  An	op&on	for	achieving	a	bo;leneck	region,	on	the	other	hand,	will	
tend	to	connect	separate	strongly	connected	areas.		

•  For	example,	in	a	room-to-room	naviga-on	task,	naviga-on	using	
primi-ve	movement	commands	produces	rela-vely	strongly	
connected	dynamics	within	each	room	but	not	between	rooms.		

•  A	doorway	links	two	strongly	connected	regions.	By	adding	an	
op-on	to	reach	a	doorway	sub-goal,	the	rooms	become	more	
closely	connected.		

•  This	allows	the	agent	to	more	uniformly	explore	its	environment.		

03/03/2017	 47	

Example	Data	in	a	Simulated	Environment	

03/03/2017	 48	

First-visit	histogram:	

Concept	of	Diverse	Density	

•  Due	to	Maron	and	Lozano	Perez	
•  Compute	the	probability	Pr(t)	that	the	tth	concept	from	a	set	

of	concepts	{ci}	is	the	correct	one	
•  If										denote	the	posi-ve	and	nega-ve	bags	of	experienced	

traces,						

03/03/2017	 49	

DD(t) = Pr(t|B+
1 , ..., B+

n , B�
1 , ..., B�

m)

B±
i

DD(t) =
Y

1in

Pr(t|B+
i)

Y

1jm

Pr(t|B�
j)

Op-ons	Discovery	

•  For	the	simulated	environment	being	considered,	when	DD	is	
calculated	over	all	traces:	

•  From	this,	op-ons	can	be	constructed	by	learning	local	
policies	to	the	subgoals	

03/03/2017	 50	

