Reinforcement Learning

Abstraction and Hierarchy in RL

Subramanian Ramamoorthy
School of Informatics

3 March, 2017

On the Organization of Behaviour

Consider day to day tasks such as opening a bottle or picking up
your coat from the stand

— How would you tell someone how to perform this?
— How do you actually get the job done? Using what?

An old idea:
sequential behavior cannot be understood as a chain
of stimulus—response associations... behavior displays

hierarchical structure, comprising nested subroutines.
- Karl Lashley (1951)

03/03/2017 2

On the Complexity of RL

{:}} f;{ | {:’\] I «"{ u\) .\‘;) .’A i {;; | J;}‘ 4} i'{:? ’\‘n ":\ i:n \ W ‘&"".}"
R A

* RL agents must learn from exploring the environment,
trying out different actions in different states
* Complexity grows quickly; how to get around?

* Balance exploration/exploitation
* Abstractions

03/03/2017

Example: Instrumental Hierarchy

(a) (b)
Pick up money Pick up money Pick up key Close door
Pick up key Unbckdmm
l Opendoor
Unlock door
l Deposit money Lock door
Open door
(c) Lock money in safe
: ~
Deposit money Deposit money Lock door
P B P BN
Pick up Open Deposit Pick up Close Lock
Close door money door money key door door
~ |
Pick up Unlock Open
Lock door key door door
TRENDS in Cognitive Sciences

Figure 1. Anillustration of hierarchical instrumental structure. (a) An action sequence for locking money in a safe. Arrows denote means-ends relationships. Red indicates
that the action accomplishes one component of the goal (money in the safe with the door closed and locked). (b) The sequence in part (a) redrawn to highlight the presence
of a part-whole structure. Blue fields indicate coherent parts and sub-parts of the action sequence. At the coarsest level, the sequence breaks down into two parts, one
organized around the sub-goal of depositing the money, the other around the sub-goal of locking the safe door. The action “pick up key’ subserves both goals. Also
indicated is a subordinate or nested sequence, which is organized around opening the safe door. (¢) One way of representing the sequence as a schema-,sub-task- or sub-
goal hierarchy. Temporally abstract actions are in blue.

[Source: M. Botvinick, Hierarchical models of behavior and prefrontal function, Trends in Cognitive Science 12(5), 2008]

03/03/2017 4

In Computational Terms, Why Hierarchy?

* Knowledge transfer/injection

— Concise encoding of temporally extended actions enables
transfer of that knowledge to a new task needing the same

* Biases exploration

— Rather than search only at the finest resolution, algorithm
can compute value of alternatives at a larger scale

* Faster solutions (even if model known)

— Following well understood principles of computer science,
hierarchy enables modularity of policies and models

03/03/2017 5

An Early Idea: Reward Shaping

11 feet * The robots’ objective is to

. . @ : Home collectively find pucks and
Balifar bring them home.
@a @ sounday * Represent the 12-dim
i environment by state
° variables (features?):
— have-puck?

— at-home?
@ — near-intruder?

" e What should the immediate
reward function be?

[Source: M. Mataric, Reward Functions for Accelerated Learning, ICML 1994]

03/03/2017 6

Reward Shaping

If a reward is given only when a robot drops a puck at home, learning
will be extremely difficult.
— The delay between the action and the reward is large.

Solution: Reward shaping (intermediate rewards).
— Add rewards/penalties for achieving sub-goals/errors:
* subgoal: grasped-puck
* subgoal: dropped-puck-at-home
* error: dropped-puck-away-from-home

Add progress estimators:
— Intruder-avoiding progress function
— Homing progress function

Adding intermediate rewards will potentially allow RL to handle more
complex problems.

Reward Shaping Results

Percentage of policy learnt after 15 minutes:

100 T
o —
£ I
= 2
: ‘
>, 20
=
o 10
Q.
I3}
s..)eo
b
@)
o% |
L
= r
kS
30-
(D)
1))
Swnt
a
D)
Pt
L
0 1 1 1

No Shaping Subgoaling Subgoaling plus
progress estimators

03/03/2017

Another Early Idea: Hierarchical Algorithms
- Gating Mechanisms

Hierarchical Learning (especially popular with neural network models)
e Learn the gating function
» Learn the individual behaviours
e Learn both simultaneously

s ™ b \
/ *Can be a multi-

level hierarchy.

03/03/2017 9

Temporal Abstraction

* What's the issue?
— Want “macro” actions (multiple time steps)
— Advantages:

» Avoid dealing with (exploring/computing values for)
less desirable states

* Reuse experience across problems/regions

 What’s not obvious
— Dealing with the Markov assumption

— Getting the calculations right (e.g., stability and
convergence)

03/03/2017 10

03/03/2017

Semi-Markov Decision Processes

11

Semi-Markov Decision Processes

* A generalization of MDPs:

The amount of time between one decision and the next is a
random variable (either real or integer valued)

* Treat the system as remaining in each state for a random
waiting time

— after which, transition to next state is instantaneous

 Real valued case: continuous time, discrete events

* Discrete case: Decisions only made an integer multiple of an
underlying time step

03/03/2017 12

Semi-Markov Decision Processes

e SMDP is defined in terms of
P(s’,T|s,a): Transition probability (Tis the waiting time)

R(s,a) or just »: Reward, amount expected to accumulate
during waiting time, 7, in particular state and action

* Bellman equation can then be written down as, for all s:

%k — TP / V>|< /
V*(s) C{g%[H;v (s',7|s,a)V*(s")]
\N

Note the need to sum over waiting time, as well.

03/03/2017 13

Semi-Markov Decision Processes

* Likewise, we can write down the Bellman equation for the
state-action value function as,

* — TP / * / /
@ (s,0) =7+ D7 P/ 7ls, @) max @ (')

Vs e S,a € A,

* So, Dynamic Programming algorithms can be naturally
extended to the case of SMDPs as well

03/03/2017

14

Q-Learning with SMDPs

* Can we also modify sampling based algorithms accordingly?

* Consider the standard Q-learning algorithm, rewritten slightly
in the following form,

Qri1(s,a) = (1 — ap)Qr(s,a) + aglr + Y max Qr(s',a")]

* |f we write down the reward sum, in brackets, for the entire
waiting time duration, then we will have

Qr+1(s,a) = (1 — ap)Qr(s,a) + agrip1 +yrige + ...

Y T e 7 Inax Qr(s',a’)]

03/03/2017 15

Case Study: Elevator Dispatching

[Crites and Barto, 1996]

hall
- - o buttons
° ® O ° DO mumm
5 '
e O O O 53
: : : : DO ,
rdropofI | pickup
equest 0 o o Us request
i | "/ (down)
//O, ° O O DO m
| I
O O Q
elevator - o 0 ° O B3 age of
going up | I request
-) - U. q
O O O ~ DO
| [ﬁ |
) o)
O O O o B()
| I
O O O
O O ® O B O
| |
O m
O > O ® [T] BO
| |
@) O] O u® 1

03/03/2017 16

Semi-Markov Q-Learning

Continuous-time problem but decisions in discrete jumps.
For this SMDP, the expression for returns can be written as,

_ k _ - Pt
Rt - E)/ rt+k+1 Or Rt _ fe rt+r dT
k=0 0

Note that the meaning of quantity r differs in the two expressions:
- reward at a discrete time step in discrete case
- reward “rate” in continuous case

The negative exponential has a similar role as the discount
factor as we have been using it so far.

03/03/2017 17

Semi-Markov Q-Learning

Suppose system takes action a from state s at time ¢,,

and next decision is needed at time ¢, in state s:

O(s.a) < (1-a)O(s, a)+af PNy dr e 1)maxQ(s a)

03/03/2017 18

Problem Setup:
Passenger Arrival Patterns

Up-peak and Down-peak traffic

* Not equivalent: down-peak handling capacity is much greater than up-
peak handling capacity; so up-peak capacity is limiting factor.

« Up-peak easiest to analyse: once everyone is onboard at lobby, rest
of trip is determined. The only decision is when to open and close
doors at lobby. Optimal policy for pure case is: close doors when
threshold number on; threshold depends on traffic intensity.

« More policies to consider for two-way and down-peak traffic.

« We focus on down-peak traffic pattern.

03/03/2017 19

Various Extant Control Strategies

- Zoning: divide building into zones; park in zone when idle. Robust in
heavy traffic.

Search-based methods: greedy or non-greedy. Receding Horizon
control.

Rule-based methods: expert systems/fuzzy logic; from human
“experts”

Other heuristic methods: Longest Queue First (LQF), Highest
Unanswered Floor First (HUFF), Dynamic Load Balancing (DLB)

- Adaptive/Learning methods: NNs for prediction, parameter space
search using simulation, DP on simplified model, non-sequential RL

The Elevator Model
(Lewis, 1991)

Discrete Event System: continuous time,
asynchronous elevator operation

Parameters:
* Floor Time (time to move one floor at max speed): 1.45 secs.

- Stop Time (time to decelerate, open and close doors, and accelerate
again): 7.19 secs.

- TurnTime (time needed by a stopped car to change directions): 1 sec.

- Load Time (the time for one passenger to enter or exit a car): a random
variable with range from 0.6 to 6.0 secs, mean of 1 sec.

- Car Capacity: 20 passengers

Traffic Profile:
- Poisson arrivals with rates changing every 5 minutes; down-peak

03/03/2017 21

State Space

- 18 hall call buttons: 2'8 combinations
- positions and directions of cars: 18% (rounding to nearest floor)

- motion states of cars (accelerating, moving, decelerating,
stopped, loading, turning): 6

40 car buttons: 249

- Set of passengers waiting at each floor, each passenger's arrival
time and destination: unobservable. However, 18 real numbers
are available giving elapsed time since hall buttons pushed; we
discretize these.

« Set of passengers riding each car and their destinations:
observable only through the car buttons

Conservatively about 1022 sates

Actions

- When moving (halfway between floors):
— stop at next floor
— continue past next floor
» When stopped at a floor:
—goup
— go down
- Asynchronous

\ 4
\4

\ 4
=

\4

\ 4

03/03/2017

\4

\ 4

23

Constraints

— « A car cannot pass a floor if a passenger wants to get off
there

* A car cannot change direction until it has serviced all
standard onboard passengers traveling in the current direction

- Don’t stop at a floor if another car is already stopping, or
Is stopped, there

: — <+ Don’t stop at a floor unless someone wants to get off
special there
heuristic

— + Given a choice, always move up

mmmmp> Stop and Continue

03/03/2017 24

Performance Criteria

Minimize:

- Average wait time
- Average system time (wait + travel time)
* % waiting > T seconds (e.g., T = 60)

- * Average squared wait time (to encourage fast and fair service)

03/03/2017

25

Average Squared Wait Time

Instantaneous cost, p individuals:

= (wait, (0))

p

Define return as an integral rather than a sum (Bradtke and Duff, 1994):

03/03/2017

26

Computing Rewards

Must calculate

o

fe'ﬁ(r‘ts)rr dt

0

- “Omniscient Rewards”: the simulator knows how long each
passenger has been waiting.

* “On-Line Rewards”: Assumes only arrival time of first passenger in
each queue is known (elapsed hall button time); estimate arrival
times

03/03/2017

27

Neural Networks

47 inputs, 20 sigmoid hidden units, 1 or 2 output units

Inputs:
« 9 binary: state of each hall down button
9 real: elapsed time of hall down button if pushed

- 16 binary: one on at a time: position and direction of car making
decision

10 real: location/direction of other cars: “footprint”
- 1 binary: at highest floor with waiting passenger?
1 binary: at floor with longest waiting passenger?
1 bias unit = 1

80

Average 60 ﬂ i
waiting
and 404
system
times 207
CTERESEZ Zao0
SQ%A%EEmmm
@) C/}
3 T =
v
Dispatcher

03/03/2017

Elevator Results

2 —
% Waiting

>1 minute
1_

SECTOR_]

|m — NS T —
LOLZE & pnad
AESEE 28R
55 &
T T m
Dispatcher

Average

squared

waiting
time

800
600
400
200 A |/H
EREE
8&%4%52
@) C/J
R T I
w
Dispatcher

29

RLl
RL2

03/03/2017

Options Framework

30

Options example:
Move until end of hallway

end of hallway.

Options can take variable number of steps

[Reference: R.S. Sutton, D. Precup, S. Singh, Between MDPs and Semi-MDPs: A framework for temporal
Abstraction in reinforcement learning, Artificial Intelligence Journal 112:181-211, 1999.

03/03/2017 31

Options [Sutton, Precup, Singh '99]

* An option is a behaviour defined in terms of:
o={l,m,PB,}

|, : Set of states in which o can be initiated.

m.(s) : Policy (mapping S to A)® when o is executing.

B,(s) : Probability that o terminates in s.

3Can be a policy
over lower level
options.

03/03/2017

32

03/03/2017

Rooms Example

Goal states are given
a terminal value of 1

4 rooms

4 hallways

4 unreliable
primitive actions

up

| : Fail 33%
left fght fihe time

down

8 multi-step options
(to each room's 2 hallways)

Given goal location,
quickly plan shortest route

All rewards zero
Y=.9

33

Options Define a Semi-MDP

Time =—

VIDP Discrete time
State. Homogeneous discount
Continuous time

SMDP 0/\/\(Discrete events
Interval-dependent discount
Options a/\ /\ B Discrete time
over MDP m Overlaid discrete events

Interval-dependent discount

A discrete-time SMDP overlaid on an MDP
Can be analyzed at either level

03/03/2017 34

MDP + Options = SMDP

Theorem:

For any MDP,

and any set of options,
the decision process that chooses among the options,

executing each to termination,
is an SMDP.

Thus all Bellman equations and DP results extend for

value functions over options and models of options
(cf. SMDP theory).

03/03/2017 35

Why is this Useful?

* We can now define policy over options as well:
w:Sx0—|0,1]

* And redefine all value functions appropriately:

VE(s), Q" (s,0), V5 (s), Qo (s,0)

* All policy learning methods discussed so far, e.g., Value and
Policy Iteration, can be defined over S and O

* Coherent theory of learning and planning, with courses of
action at variable time scales, yet at the same level

03/03/2017 36

Value Functions Over Options

We can write the expression for optimal value as,

V(o) =, e, VO

Vo (s) = grel%x E{riig + ...+ ’yk_lrt+k + ’kaé’j(sHk)\S(o, s,t)}

Vé(s) = max Elr + 4 V3 ()€ (o, 5)

k being the duration of o when taken in s; conditioning is over the event
that the option is initiated at that state and time.

03/03/2017 37

Motivations for Options Framework

 Add temporally extended activities to choices available to RL
agent, without precluding planning and learning at finer
grained MDP level

* Optimal policies over primitives are not compromised due to
addition of options

 However, if an option is useful, learning will quickly find this
out — prevent prolonged and useless ‘flailing about’

PS: If all options are 1-step, you recover the core MDP

03/03/2017

38

03/03/2017

Rooms Example —
Policy within One Room

100

90

80- R

70F

60

50

Colour = option specific value

39

Time Course of Use of Action/Option

[Source: M. Botvinick, Hierarchical models of behavior and prefrontal function, Trends in Cognitive Science 12(5), 2008]

03/03/2017 40

Performance Improvement with Options

600 -
500 -
400 -
Q
© 300
n
200 -
With options
100 - / ___ Primitive actions only
0 —— e
20 40 60 80 100 120 140 160 180 200

Episode

[Source: M. Botvinick, Hierarchical models of behavior and prefrontal function, Trends in Cognitive Science 12(5), 2008]
41

03/03/2017

03/03/2017

Learning Options

42

Goal/State Abstraction

* Why are these together?
— Abstract goals typically imply abstract states

* Makes sense for classical planning
— Classical planning uses state sets
— Implicit in use of state variables

* Does this make sense for RL? Things to think about:
— No goals
— Markov property issues

03/03/2017

43

Automatic Hierarchy Discovery

* Hard in contexts such as classical planning

Within a single problem:

— Battle is lost if all states considered (polynomial speedup
at best)

— |If fewer states considered, when to stop?
* Across problems
— Considering all states OK for few problems?

— Generalize to other problems in class (transfer learning)

* How best to measure progress? Remains an open problem...

03/03/2017 44

Bottlenecks: Principle for Option Learning

Subgoals are created based on commonalities across multiple
paths to a solution

e Cast the task of finding these commonalities as a multiple-
instance learning problem

* System attempts to identify a target concept on the basis of

“bags” of instances: positive bags have at least one positive
instance, while negative bags consist of all negative instances.

* A successful trajectory corresponds to a positive bag, where the
instances are the agent’s observations along that trajectory.

* A negative bag consists of observations made over an
unsuccessful trajectory.

[Reference: A. McGovern, A.G. Barto, Accelerating reinforcement learning through discovery of useful subgoals,
Proc. i-SAIRAS 2001.

03/03/2017 45

Motivation for Bottlenecks

Agent searches for bottleneck regions in observation space.

The idea of looking for bottleneck regions was motivated by
studying room-to-room navigation tasks where the agent
should quickly discover the utility of doorways as subgoals.

IF the agent can recognize that a doorway is a kind of
bottleneck by detecting that the sensation of being in the
doorway always occurred somewhere on successful
trajectories

— BUT not always on unsuccessful ones,
THEN it can create an option to reach the doorway.

Bottlenecks - Computationally

If the agent uses some form of randomness to select exploratory
primitive actions, it is likely to remain within the more strongly
connected regions of the state space.

An option for achieving a bottleneck region, on the other hand, will
tend to connect separate strongly connected areas.

For example, in a room-to-room navigation task, navigation using
primitive movement commands produces relatively strongly
connected dynamics within each room but not between rooms.

A doorway links two strongly connected regions. By adding an
option to reach a doorway sub-goal, the rooms become more
closely connected.

This allows the agent to more uniformly explore its environment.

Exam

0

e Data in a Simulated Environment

I G

|

03/03/2017

Bottleneck area
and useful subgoal location

First-visit histogram:

48

Concept of Diverse Density

e Due to Maron and Lozano Perez

* Compute the probability Pr(f) that the /" concept from a set
of concepts {c;} is the correct one

e If B;t denote the positive and negative bags of experienced
traces,

DD(t) = Pr(t|Bf,...,.Bf,By,...,B.)

ppt)y= || pr@t/Bf)] PrB;)

1<i<n 1<57<m

03/03/2017 49

Options Discovery

* For the simulated environment being considered, when DD is
calculated over all traces:

A: Average Diverse Density B: Subgoals Discovered

* From this, options can be constructed by learning local
policies to the subgoals

