
Reinforcement	Learning	
	

Generaliza2on	and	Func2on	Approxima2on	

Subramanian	Ramamoorthy	
School	of	Informa2cs	

	
28	February,	2017	

Core	RL	Task:	Es.mate	Value	Func.on	

•  We	are	interested	in	determining	Vπ	from	experience	
generated	using	a	policy,	π.	

•  So	far,	we	have	considered	situa.ons	wherein	Vπ	is	
represented	in	a	table.		

•  We	would	now	like	to	represent	Vπ using	a	parameterized	
func.onal	form.	

28/02/2017	 2	

Need	for	Generaliza.on	

•  Large	state/ac.on	spaces	
•  Con.nuous	valued	states	and	ac.ons	
•  Most	states	may	not	be	experienced	exactly	before	
•  Many	considera.ons:	

– Memory	
–  Time		
–  Data	
	

28/02/2017	 3	

How can experience with a small part of state space be used to
produce good behaviour over large part of state space?

Func.on	Approxima.on	

•  Use	a	weight	vector	θ	to	parameterize	the	func.onal	form.	
•  Vπ is	approximated	by	another	func.on											
•  This	func.on	 could	be	a	linear	func.on	in	features	of	

the	state	s
–  θ would	then	be	the	feature	weights	

•  The	func.on	could	also	be	computed	by	a	neural	network	
–  θ	would	be	the	vector	of	connec.on	weights	in	all	layers	
– More	expressive	and	could	capture	many	func.on	forms	

•  Another	example	is	to	compute	V	with	a	decision	tree	
–  θ	would	be	numbers	defining	split	points	and	leaf	values	

28/02/2017	 4	

V (s, ✓)

V (s, ✓)

Feature	Vectors	

28/02/2017	 5	

This gives you a summary of state,
e.g., state ó weighted linear combination of features

Issues	with	Func.on	Approxima.on	

•  Number	of	weights	(number	of	components	of	θ)	is	much	less	
than	the	number	of	states	

•  Changing	any	component	of	the	weight	vector	will	have	an	
effect	on	more	than	one	state	at	a	.me	
–  In	contrast,	with	a	tabular	representa.on,	backups	were	
computed	state	by	state	independently		

•  This	is	generaliza.on	
–  Poten.ally	more	powerful	
– May	need	to	be	managed	with	care	

28/02/2017	 6	

(n ⌧ |S|)

Supervised	Learning	Approach	

Adapt Parameterized
Function	Inputs	 Outputs	

Training Info = desired (target) outputs

Error		=		L (target	output		–		actual	output)	

Training	example		=		{input,	target	output}	

28/02/2017	 7	

Value	Predic.on	-	Backups	

•  All	of	the	value	predic.on	methods	we	have	looked	at	can	be	
understood	as	‘backups’	

•  Updates	to	an	exis.ng	value	func.on	that	shif	its	value	at	
par.cular	states	towards	‘backed-up	value’	

•  Func.on	mapping	Vπ(s)	to	a	goal	value	towards	which	Vπ(s) is	
then	shifed.		

•  In	the	case	of	Monte	Carlo	predic.on,	goal	value	is	return	Rt

•  The	goal	value	in	the	case	of	TD(0)	is	

28/02/2017	 8	

rt+1 + �V ⇡(st+1)

Using	Backups	as	Training	Examples	

e.g., the TD(0) backup:
 V (st)←V (st)+α rt+1 +γV (st+1)−V (st)[]

description of st, rt+1 +γV (st+1){ }

As	a	training	example:	

Input		
(e.g.,	feature	vector)	

Target	Output	

28/02/2017	 9	

What	Kind	of	Func.on	Approxima.on?	

•  Neural	networks,	decision	trees,	mul.variate	regression	...	
•  Use	of	sta.s.cal	clustering	for	state	aggrega.on	
•  Can	swap	in/out	your	favourite	func.on	approxima.on	

method	as	long	as	they	can	deal	with:	
–  learning	while	interac.ng,	online	(not	just	batch	methods)	
–  non-sta.onarity	induced	by	policy	changes	

•  As	learning	proceeds,	target	func.on	may	change	(e.g.,	
in	the	case	of	TD(0))	

•  So,	combining	gradient	descent	methods	with	RL	requires	
care	(especially	regarding	convergence)	

28/02/2017	 10	

Predic.on	Objec.ve	

•  In	the	tabular	case,	updates	were	decoupled.	Eventually,	we	
would	arrive	at	the	correct	Vπ	for	all	states.	

•  When	approxima.ng	value	func.on,	we	need	a	measure	of	
quality	of	predic.on		
– May	not	be	possible	to	get	exactly	correct	predic.on	in	all	
states	

–  Because	we	have	more	states	than	weights	
•  What	else	could	we	do?	

–  Decide	which	states	we	care	about	the	most	
– Weight	error	with	a	distribu.on	P(s)		

28/02/2017	 11	

Performance	Measures	

•  Many	are	applicable	but…	
•  a	common	and	simple	one	is	the	mean-squared	error	(MSE)	

over	a	distribu.on	P	:	

•  Why	minimize	MSE?	
Real	objec.ve	is	of	course	a	bemer	policy,	but	unclear	how	
else	to	get	at	that	other	than	value	predic.on.	

•  Why	P	?	
Consider,	e.g.,	the	case	where	P		is	always	the	distribu.on	of	
states	at	which	backups	are	done.	

MSE(θt) = P(s) V π (s)−Vt (s)⎡⎣ ⎤⎦
s∈S
∑

2

28/02/2017	 12	

Approximated ‘surface’Value obtained, e.g.,
by backup updates

Choosing	P(s)

•  One	natural	defini.on:	frac.on	of	.me	spent	in	s	while	
following	the	target	policy	π.	

•  In	con.nuous	tasks,	this	is	the	the	sta.onary	distribu.on	
under	π

•  In	episodic	tasks,	this	depends	on	how	the	ini.al	states	of	
episodes	are	drawn	

•  The	on-policy	distribu.on:	the	distribu.on	created	while	
following	the	policy	being	evaluated.	Stronger	results	are	
available	for	this	distribu.on.	

28/02/2017	 13	

Linear	Methods	

Represent states as feature vectors;
for each s ∈ S :
!
φs = φ1,φ2,…,φn()s

T

Vt (s) =
!
θt
T
!
φs = (θi)t (φi)s

i=1

n

∑

∇ !
θ
Vt (s) = ?

28/02/2017	 14	

What	are	we	learning?	From	what?	

Update the weight vector:
!
θt = θ1,θ2,...,θn()t

T

Assume Vt is a (sufficiently smooth) differentiable function

of
!
θt, for all s ∈ S.

Assume, for now, training examples of this form:

 description of st, V π (st){ }

28/02/2017	 15	

Concept:	Gradient	Descent	

28/02/2017	 16	

Let f be any function of the parameter space.

Its gradient at any point
!
θt in this space is:

 ∇ !
θ
f (
!
θt) = ∂ f (

!
θt)

∂θ1

,∂ f (
!
θt)

∂θ2

,…,∂ f (
!
θt)

∂θn

⎛

⎝
⎜

⎞

⎠
⎟

T

θ1

θ2 !
θt = θ1,θ2()t

T

!
θt+1 =

!
θt −α∇ !θ f (

!
θt)

Iteratively move down the gradient:

Gradient	Descent	for	Weights		
–	Basic	Setup	

!
θt+1 =

!
θt −

1
2
α∇ !

θ
MSE(

!
θt)

=
!
θt −

1
2
α∇ !

θ
P(s)

s∈S
∑ V π (s)−Vt (s)⎡⎣ ⎤⎦

2

=
!
θt +α P(s)

s∈S
∑ V π (s)−Vt (s)⎡⎣ ⎤⎦∇ !θVt (s)

For	the	MSE	given	earlier	and	using	the	chain	rule:		

28/02/2017	 17	

Gradient	Computa.on	

!
θt+1 =

!
θt −

1
2
α∇ !

θ
V π (st)−Vt (st)⎡⎣ ⎤⎦

2

=
!
θt +α V π (st)−Vt (st)⎡⎣ ⎤⎦∇ !θVt (st),

In	prac.ce,	could	just	use	the	sample	gradient		
(as	we	are	ac.ng	based	on	the	same	distribu.on,	P(s):	

Since	each	sample	gradient	is	an	unbiased	es2mate	of	
the	true	gradient,	this	converges	to	a	local	minimum		
of	the	MSE	if	α	decreases	appropriately	with	t.	

E V π (st)−Vt (st)⎡⎣ ⎤⎦∇ !θVt (st) = P(s) V π (s)−Vt (s)⎡⎣ ⎤⎦
s∈S
∑ ∇ !

θ
Vt (s)

28/02/2017	 18	

But	We	Don’t	have	these	Targets	

Suppose we just have targets vt instead :
!
θt+1 =

!
θt +α vt −Vt (st)[]∇ !θVt (st)

If each vt is an unbiased estimate of V π (st),
i.e., E vt{ }=V π (st), then gradient descent converges
to a local minimum (provided α decreases appropriately).

e.g., the Monte Carlo target vt = Rt :

!
θt+1 =

!
θt +α Rt −Vt (st)[]∇ !θVt (st)

28/02/2017	 19	

State	aggrega.on	is	the	simplest	kind	of	
Value	Func.on	Approxima.on	

•  States	are	par..oned	into	disjoint	subsets	(groups)	
•  One	component	of	𝜽	is	allocated	to	each	group	

Recall:

V
t

(s) = ✓
group

(s)

r✓Vt(s) = [0, 0, ..., 1, 0, 0, ..., 0]

✓ ✓ + ↵[Targett � Vt(st)]r✓Vt(st)

20	

1000-state	random	walk	example	

•  States	are	numbered	1	to	1000	

•  Walks	start	in	the	near	middle,	at	state	500	

•  At	each	step,	jump	to	one	of	the	100	states	to	the	right,		
or	to	one	of	the	100	states	to	the	lef	

•  If	the	jump	goes	beyond	1	or	1000,	terminates	with	a	
reward	of	-1	or	+1	
(otherwise	rt =	0)	

21	

State	aggrega.on	into	10	groups	of	100	

The whole value function over 1000 states will be approximated with 10 numbers!

22	

VF	Computed	with	Gradient	MC	

23	

•  10	groups	of	100	states	

•  afer	100,000	episodes	

•  α	=	2	x	10-5	

•  state	distribu.on	affects	
accuracy	

28/02/2017	

On	Basis	Func.ons:	Coarse	Coding	

28/02/2017	 24	

Many ways to achieve “coding”:

Shaping	Generaliza.on	in	Coarse	Coding		

28/02/2017	 25	

Binary features defined by overlap between receptive fields.

Learning	and	Coarse	Coding	

28/02/2017	 26	

Tile	Coding	

28/02/2017	

•  Binary	feature	for	each	.le	
•  Number	of	features	present	at	

any	one	.me	is	constant	
•  Binary	features	means	

weighted	sum	easy	to	compute	
•  Easy	to	compute	indices	of	the	

features	present	

27	

Encoding	2D	Space	with	Many	Tiles	

28/02/2017	 28	

Generalizing	with	Uniformly	Offset	Tiles	

28/02/2017	 29	

Generalizing	with	Asymmetrically	Offset	
Tiles	

28/02/2017	 30	

Tile	Coding,	Contd.	

Irregular	.lings	

Hashing	

28/02/2017	 31	

Radial	Basis	Func.ons	(RBFs)	

(φi)s = exp −
s− ci

2

2σ i
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

e.g.,	Gaussians	

28/02/2017	 32	

Bea.ng	the	“Curse	of	Dimensionality”	

•  Can	you	keep	the	number	of	features	from	going	up	
exponen.ally	with	the	dimension?	

•  Func.on	complexity,	not	dimensionality,	is	the	problem.	
•  Kanerva	coding:	

–  Select	a	set	of	binary	prototypes	
–  Use	Hamming	distance	as	distance	measure	
–  Dimensionality	is	no	longer	a	problem,	only	complexity	

•  “Lazy	learning”	schemes:	
–  Remember	all	the	data	
–  To	get	new	value,	find	nearest	neighbors	&	interpolate	
–  e.g.,	(nonparametric)	locally-weighted	regression	

28/02/2017	 33	

Going	from	Value	Predic.on	to	GPI	

•  So	far,	we’ve	only	discussed	policy	evalua.on	where	the	value	
func.on	is	represented	as	an	approximated	func.on	

•  In	order	to	extend	this	to	a	GPI-like	sepng,	
1.  Firstly,	we	need	to	use	the	ac.on-value	func.ons	
2.  Combine	that	with	the	policy	improvement	and	ac.on	

selec.on	steps	

28/02/2017	 34	

Gradient	Descent	Update	for		
Ac.on-Value	Func.on	Predic.on	

28/02/2017	 35	

How	to	Plug-in	Policy	Improvement		
or	Ac.on	Selec.on?	

•  If	spaces	are	very	large,	or	con.nuous,	this	is	an	ac.ve	
research	topic	

•  For	manageable	discrete	spaces,	
–  For	each	ac.on,	a,	available	at	a	state,	st,	compute	Qt(st,a)	
and	find	the	greedy	ac.on	according	to	it	

–  Then,	one	could	use	this	as	part	of	an	ε-greedy	ac.on	
selec.on	or	as	the	es.ma.on	policy	in	off-policy	methods	

28/02/2017	 36	

Example:	Mountain-car	Task	

•  Drive	an	underpowered	car	up	
a	steep	mountain	road		

•  Gravity	is	stronger	than	engine	
(like	in	cart-pole	example)	

•  Example	of	a	con.nuous	
control	task	where	system	
must	move	away	from	goal	
first,	then	converge	to	goal	

•  Reward	of	-1	un.l	car	
‘escapes’	

•  Ac.ons:	+τ,	-τ,	0	

28/02/2017	 37	

Mountain-car	Example:		
Cost-to-go	Func.on	(SARSA	solu.on)	

28/02/2017	 38	

Mountain	Car	Solu.on	with	RBFs	

28/02/2017	 39	

[Computed	by	M.	Kretchmar]	

