Reinforcement Learning

Generalization and Function Approximation

Subramanian Ramamoorthy
School of Informatics

28 February, 2017

Core RL Task: Estimate Value Function

* We are interested in determining V™ from experience
generated using a policy, .

e So far, we have considered situations wherein V7 is
represented in a table.

Al |B 3.3/8.8/4.4/53/15

+5 1.5|3.0/ 2.3/ 1.9/ 0.5
+10) B" <—I—> 0.1{0.7| 0.7| 0.4|-0.4|
-1.0{-0.4/-0.4/-0.6-1.2

: Actions
A‘r -1.9[-1.3-1.2|-1.4]-2.0

* We would now like to represent V™ using a parameterized
functional form.

28/02/2017

Need for Generalization

* Large state/action spaces
* Continuous valued states and actions
 Most states may not be experienced exactly before
* Many considerations:
— Memory
— Time
— Data

How can experience with a small part of state space be used to
produce good behaviour over large part of state space?

28/02/2017

Function Approximation

Use a weight vector 6to parameterize the functional form.
V7 is approximated by another function V' (s,)

This function V' (s, #) could be a linear function in features of
the state s

— O would then be the feature weights
The function could also be computed by a neural network
— B would be the vector of connection weights in all layers
— More expressive and could capture many function forms
Another example is to compute V" with a decision tree
— O would be numbers defining split points and leaf values

Feature Vectors

(redness
oTeenness

\
DO
N Lo Ot
-

Os = roundness —

ot

DO =
O
N—

starness

\ s)\

e “Redness” = say closeness to 111111110000000000000000 (RGB, R=255,
G=0, B=0)
e "Roundness” = say distance of points from enclosing circle

e "‘Starness’ = say some combination of number of points, template matching
to a star shape, high spatial frequency components of boundary

This gives you a summary of state,
e.g., state <> weighted linear combination of features

28/02/2017

Issues with Function Approximation

 Number of weights (hnumber of components of 6) is much less
than the number of states (n < |S|)

* Changing any component of the weight vector will have an
effect on more than one state at a time

— In contrast, with a tabular representation, backups were
computed state by state independently

* This is generalization

— Potentially more powerful
— May need to be managed with care

28/02/2017

Supervised Learning Approach

Training Info = desired (target) outputs

}

Inputs P>

Adapt Parameterized
Function

HP> Outputs

Training example = {input, target output}

Error = £ (target output — actual output)

28/02/2017

Value Prediction - Backups

All of the value prediction methods we have looked at can be
understood as ‘backups’

Updates to an existing value function that shift its value at
particular states towards ‘backed-up value’

Function mapping V7(s) to a goal value towards which V*(s) is
then shifted.

In the case of Monte Carlo prediction, goal value is return R,
The goal value in the case of TD(0) is T¢+1 + ’VVW(SH_l)

Using Backups as Training Examples

e.g., the TD(0) backup:
V(s,)<=V(s,)+a [1;+1 +yV(s,,,) V(st)]

As a training example:

{description of s,, 7,,, +YV(s,,)}

[\

Input Target Output
(e.g., feature vector)

28/02/2017

What Kind of Function Approximation?

* Neural networks, decision trees, multivariate regression ...
* Use of statistical clustering for state aggregation

e Can swap in/out your favourite function approximation
method as long as they can deal with:

— learning while interacting, online (not just batch methods)
— non-stationarity induced by policy changes

* As learning proceeds, target function may change (e.g.,
in the case of TD(0))

* So, combining gradient descent methods with RL requires
care (especially regarding convergence)

28/02/2017 10

Prediction Objective

In the tabular case, updates were decoupled. Eventually, we
would arrive at the correct V* for all states.

When approximating value function, we need a measure of
quality of prediction
— May not be possible to get exactly correct prediction in all
states
— Because we have more states than weights
What else could we do?
— Decide which states we care about the most

— Weight error with a distribution P(s)

Performance Measures

 Many are applicable but...

e acommon and simple one is the mean-squared error (MSE)
over a distribution P :

MSE®,) = Y P&V (5)-V,(9)]

SN

Value obtained, eg. Approximated ‘surface’
« Why minimize MSE? by backup updates
Real objective is of course a better policy, but unclear how
else to get at that other than value prediction.
e WhyP?

Consider, e.g., the case where P is always the distribution of
states at which backups are done.

28/02/2017 12

Choosing P(s)

One natural definition: fraction of time spent in s while
following the target policy .

In continuous tasks, this is the the stationary distribution
under 7t

In episodic tasks, this depends on how the initial states of
episodes are drawn

The on-policy distribution: the distribution created while
following the policy being evaluated. Stronger results are
available for this distribution.

Linear Methods

Represent states as feature vectors;
foreach s € S :

b, = (P Prsen)

T

Vi(s)=6 g, = ¥ (6,),($),

V.V (s)= 7

28/02/2017

14

What are we learning? From what?

Update the weight vector:
0, =(6,,6,,....6,)

T

4

Assume V. 1s a (sufficiently smooth) differentiable function

of é;, for all s € S.

Assume, for now, training examples of this form:

{description of s, V”(st)}

28/02/2017 15

Concept: Gradient Descent

Let f be any function of the parameter space.

Its gradient at any point é; in this space 1s:

V~f(§)= o"f(é;) é’f(é;) ﬁf(é;) '
) \Yi 36, ; 76, yenns 76

A

0,

meu’ve(y move down the gmdl’ent:

§t+1 = ét - O{Vé»f(é;) 6,

28/02/2017 16

Gradient Descent for Weights
— Basic Setup

For the MSE given earlier and using the chain rule:

I | ~
0=, - aV;MSE(®)

~0,-~a¥, S PV () - V(0]

sES

=6, +a Y P(s)| V()= V,(5)|V,V,(s)

sES

28/02/2017 17

Gradient Computation

In practice, could just use the sample gradient
(as we are acting based on the same distribution, P(s):

6, -2V, [V*(s)- V)]

—

0t+1

0, +a|V7(s)=V,(5)|V,;Vi(s)),

Since each sample gradient is an unbiased estimate of
the true gradient, this converges to a local minimum
of the MISE if o decreases appropriately with t.

E[V7(s)=Vi(s)|V,Vi(s) = Y P(s)|[V()= V() VVi(s)

SES

28/02/2017 18

But We Don’t have these Targets

Suppose we just have targets v, instead :

§t+1 = ét + Ol[Vt o Vt(St)]Vévt(St)

If each v, is an unbiased estimate of V" (s,),
1e., E {vt} = V7 (s,), then gradient descent converges

to a local minimum (provided a decreases appropriately).

e.g., the Monte Carlo target v, = R :
§t+l = ét + O{[Rt — Vt(St)]Vévt(St)

28/02/2017 19

State aggregation is the simplest kind of
Value Function Approximation

e States are partitioned into disjoint subsets (groups)
* One component of @ is allocated to each group

Va

Vi(s) = Ogroup(s)
VoVi(s) = [0,0,...,1,0,0,...,0]

Recal: 0 + 0+ a|Target; — Vi(s¢)|VeVi(st)

20

1000-state random walk example

States are numbered 1 to 1000
Walks start in the near middle, at state 500 So = 500

At each step, jump to one of the 100 states to the right,
or to one of the 100 states to the left Sy € {400..499} U {501..600}

If the jump goes beyond 1 or 1000, terminates with a
reward of =1 or +1
(otherwise r:= 0)

trajectory of 11 jumps

-1 +1

\ ","‘v "‘ v".v: : " [,"' "‘ ",‘ "‘,"‘ ."v,‘. ‘y‘ I\I "' "‘
\/ | \ | | \/ \ |
— i o . 1 e

state 1 state 500 state 1000
21

State aggregation into 10 groups of 100

trajectory of 11 jumps

_, [\w@%/\ﬂ/ \ |,

i J 3 &l
| I— TS o e - ‘
\d'SZD

| Vv WV N ~
'i group 1 group 2 group 3 group 4 group 5 \ grom 6 \9‘0up 7 gloup 9 group 10
| /
,. |

state 1 state 500 state 1000

The whole value function over 1000 states will be approximated with 10 numbers!

22

VF Computed with Gradient MC

10 groups of 100 states

e after 100,000 episodes

e a=2x10"
1r True ~10.0137
value ~—
* state distribution affects l e
accuracy i74:
Value | Approximate Distribution

0 MC value ~

scale / scale

10.0017

1 St ate 1000

28/02/2017 23

On Basis Functions: Coarse Coding

Many ways to achieve “coding”:

i
'1

original expanded

igi : N

. + representation, approximation
representation mpnyf atures

28/02/2017

24

Shaping Generalization in Coarse Coding

Binary features defined by overlap between receptive fields.

a) Narrow generalization b) Broad generalization c) Asymmetric generalization

28/02/2017

Learning and Coarse Coding

------------------- desired approx-
#Examples ’ -~ function { | g |

10 _M/X_ _/'/X{ V\

40 _f\/__ J\ /\
160 m ﬂ /\
640 __,f L ﬂ /\
10240 '_fw\M w_m“ “/*\\/\ﬁ
Narrow Medium Broad
features features features

28/02/2017

feature
width

26

Tile Coding

e Binary feature for each tile

 Number of features present at
any one time is constant

* Binary features means
weighted sum easy to compute

* Easy to compute indices of the
features present

tiling #1 —

tiling #2 —

2D state
space T—a

28/02/2017

Shape of tiles = Generalization

#Tilings = Resolution of final approximation

27

Encoding 2D Space with Many Tiles

Tiling 1 —
Tiling2 — T[]
Tiling 3
Tiling 4

JEY N S |

Four active
- tiles/features
~— overlap the point
| and are used to
represent it

"~ Pointin

state space
to be
represented

A e it W

/

28/02/2017

28

Generalizing with Uniformly Offset Tiles

Possible
generalizations
for uniformly
offset tilings

"TERY
Fawy»

28/02/2017

29

Generalizing with Asymmetrically Offset
Tiles

Possible

generalizations
for asymmetrically
offset tilings

28/02/2017

30

Tile Coding, Contd.

Irregular tilings /\| ;<’ >:[%:

a} Irmaguiar b Log stripes &) Diagonal sirpes

Hashing

28/02/2017

Radial Basis Functions (RBFs)

e.g., Gaussians

2

s—c,
207

l

(¢i)s =CXp _‘

28/02/2017

32

Beating the “Curse of Dimensionality

 Can you keep the number of features from going up
exponentially with the dimension?

* Function complexity, not dimensionality, is the problem.
* Kanerva coding:
— Select a set of binary prototypes
— Use Hamming distance as distance measure
— Dimensionality is no longer a problem, only complexity
e “Lazy learning” schemes:
— Remember all the data
— To get new value, find nearest neighbors & interpolate
— e.g., (honparametric) locally-weighted regression

28/02/2017 33

Going from Value Prediction to GPI

e So far, we've only discussed policy evaluation where the value
function is represented as an approximated function

* Inorder to extend this to a GPI-like setting,
1. Firstly, we need to use the action-value functions

2. Combine that with the policy improvement and action
selection steps

28/02/2017 34

28/02/2017

Gradient Descent Update for
Action-Value Function Prediction

— —
011 = 0+ O"['Ut — Qt(St-, a-t)] V;t Qt(st-. (l.-t.)

e.g., Ry = req1 + vQt(st+1, ar+1)

35

How to Plug-in Policy Improvement
or Action Selection?

* If spaces are very large, or continuous, this is an active
research topic

* For manageable discrete spaces,

— For each action, g, available at a state, s, compute Q(s,a)
and find the greedy action according to it

a; = arg max, Q¢(s¢,a)

— Then, one could use this as part of an &-greedy action
selection or as the estimation policy in off-policy methods

28/02/2017 36

Example: Mountain-car Task

* Drive an underpowered car up MOUNTAN CAR Goal
a steep mountain road
e Gravity is stronger than engine p
(like in cart-pole example) &
/,

* Example of a continuous
control task where system
must move away from goal
first, then converge to goal

Ty = bound [.l', + .i',H}

Ty = bound [.i', + 0.001a; + —0.0025 ('().\'(3‘1',)}
* Reward of -1 until car

‘escapes’
* Actions: +t, -, 0

28/02/2017 37

Mountain-car Example:
Cost-to-go Function (SARSA solution)

MOUNTAIN CAR Goal

28/02/2017 38

28/02/2017

Mountain Car Solution with RBFs

Jee*'

[Computed by M. Kretchmar]

39

