Reinforcement Learning

Temporal-Difference (TD) Learning

Subramanian Ramamoorthy
School of Informatics

31 January, 2017

Learning in MDPs

* You are learning from a long

stream of experience:
SoaoprosS1a171...SQETEk...

state

action

... Up to some terminal state

state

* Direct methods:
action Approximate value function
(V/Q) straight away -
without computing P2, R%,

ss’

state

action

Should you wait until episodes end

or can you learn on-line?

state

31/01/2017 Reinforcement Learning 2

Recap: Incremental Monte Carlo Algorithm

* Incremental sample-average procedure:

V(s) & V() + = [R=V (o)

* Where n(s) is number of first visits to state s

— Note that we make one update, for each state, per episode

* One could pose this as a generic constant step-size algorithm:

Vi(s) < V(s)+alR—V(s)

— Useful in tracking non-stationary problems (task + environment)

31/01/2017 Reinforcement Learning 3

Example: Driving Home

State Elapsed Time Predicted Predicted
(minutes) Time to Go Total Time
leaving office 0 30 30
reach car, raining 5 (5) 35 40
exit highway 20 (15) 15 35
behind truck 30 (10) 10 40
home street 40 (10) 3 43

arrive home 43 (3) 0 43

Reinforcement Learning

Driving Home

Changes recommended by Monte

Carlo methods (a=1)

45 -
___Aactual outcome_____
) 40
Predicted
total
travel 35 -
time
30
T T T T T T
leaving reach exiting 2ndary home arrive
office car highway road street home
Situation
31/01/2017

Changes recommended
by TD methods (a=1)

actual
outcome
Predicted
total
travel
time

T T T T T T
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

Reinforcement Learning 5

What does DP Do?

V(s) < E {1, +7 V(s,)}

31/01/2017 Reinforcement Learning

What does Simple MC Do?

V(s,)< V(s) +a[R,-V(s,)]

where R is the actual return following state s, .

31/01/2017 Reinforcement Learning

ldea behind Temporal Difference Procedure

V(s,) < V(s,) +a|r, +yV(s,.)-V(s)]

31/01/2017 Reinforcement Learning

Temporal Difference Prediction

Policy Evaluation is often referred to as the Prediction Problem: we are trying to
predict how much return we'll get from being in state s and following policy 7 by
learning the state-value function V™. Compare:

Monte-Carlo update:
Visy) — Vi(sy) + a[Ry — V(sy)]

Target: actual return from s; to end of episode

~

@implest temporal difference update TD(0):

Vist) = Vist) + Qf[|'7’t+1 + "/"V('S‘t+1)| — V(st)]

| Target: estimate of the return)

.

Both have the same form

31/01/2017 Reinforcement Learning 9

Temporal Difference Learning

* Does not require a model (i.e., transition and reward prob.) —
learn directly from experience

* Update estimate of V/(s) soon after visiting the state s

AVi(st) = afre+1 + Vg1 (st+1) — Va(st)] oSy
L/,,’ ,,/// IIIII i . a
Viti(st) = Vilse) i "
K () St 1
., ' +
Actual 1-step reward V¥ v
Discounted estimate Initial estimate Backup diagram
1 of future reward , of future reward
I
This is better than ..eeeveveveeevvnnnn, this

31/01/2017 Reinforcement Learning 10

TD(0) Update

Vi(st) < V(st) + alrgr + vV (ser1) — V(se)]

cf Dynamic Programming update:

*'ﬂ(s) == /‘:n{l‘m 1 T+ ","'w(-“'t 1) ‘ ot = '“'}
= Y ow(s.a) Y Pl + V()]

a 5"

riv1 + vV (si41) is a better estimate of the value function than V'(s;) because it
replaces one step of estimated reward — that from ¢t to ¢ + 1 — with the actual
reward 7, obtained in that step.

31/01/2017 Reinforcement Learning 11

TD(0) Algorithm for Learning '™

e Initialise V'(s) arbitrarily; 7 is the policy to be evaluated; choose learning rate
« and discount factor ~

e Repeat for each episode
Pick a start state s
Repeat for each step in episode
Get action a given by policy 7 for state s
Take action a, observe reward r and next state s’
Vis) —V(s)+ alr+~V(s') —V(s)] —
s «— s

until s is terminal

From S+B Fig. 6.1

31/01/2017 Reinforcement Learning 12

Why TD Learning?

e Don't need a model of the environment

e On-line and incremental — updates each step — so can be fast
don't need to wait till the end of the episode so need less

memory, computation
subsequent updates take immediate advantage of updated values

cf. Monte Carlo — waits till end of episode, episodes may be long or tasks
continuing, some MC must ignore episodes with exploratory steps

e Updates are based on actual experience (r,4)
e Converges to V™(s) — but must decrease step size as learning continues

Why?

31/01/2017 Reinforcement Learning 13

Bootstrapping, Sampling

TD bootstraps: it updates its estimates of IV based on other estimates of V'
DP also bootstraps

MC does not bootstrap: estimates of complete returns are made at the end of
the episode

TD samples: its updates are based on one path through the state space
MC also samples

DP does not sample: its updates are based on all actions and all states that can
be reached from the updating state

Examples: see e.g. random walk example S+B sect. 6.2

31/01/2017 Reinforcement Learning 14

Random Walk Example

0 0 0 0 0 [
B——C0)—0)—(C)~—0)~—CE)—N0

start
0.8 -
100
0.6 10
Estimated (1) _——
value 0.4 -
true
values
Values learned by TD(0) after 0%~
various numbers of episodes
0 : . ' | |
A B C D E

31/01/2017 Reinforcement Learning 15

TD and MC on the Random Walk

0.25

0.2

RMS error, 0-157
averaged
over states 0-1-

0.05 -

Walks / Episodes

Data averaged over
100 sequences of episodes

31/01/2017 Reinforcement Learning 16

Understanding TD vs. MC

S+B Example 6.4:
* You observe 8 episodes of a process:

A,0,B,0 B,1 B,1 B,1 B,1 B,1 B,1 B,0
* [nterpretation:

— First episode starts in state A, transitions to B getting a reward of O,
and terminates with a reward of O

— Second episode starts in state B, terminates with a reward of 1, etc.

Question: What are good estimates for V(4) and V(B)?

31/01/2017 Reinforcement Learning

S+B Example 6.4: Underlying Markov Process

/ _\ r=0

A

./ 100%
V(A)=?

31/01/2017 Reinforcemen t Learning 18

TD and MC Estimated

e Batch Monte Carlo (update after all episodes done) gets V(A) = 0.
— This best matches the training data
— It minimises the mean-square error on the training set

* Consider sequentiality: A to B to terminating state; V(A) = 0.75.
— This is what TD(0) gets

— Expect that this will produce better estimate of future data even
though MC gives the best estimate on the present data

— Is correct for the maximum-likelihood estimate of the model of the
Markov process that generates the data, i.e. the best-fit Markov
model based on the observed transitions

— Assume this model is correct; estimate the value function — “certainty-
equivalence estimate”

TD(0) tends to converge faster because it moves towards a better estimate.

31/01/2017 Reinforcement Learning 19

TD for Control. Learning O-Values

Learn action values Q™ (s, a) for the policy 7

Q(sy ,a) Q(St+1 2t+1)
— r Cor etc
s \'j:- \"*-Q t+1 :f’g \'} @ t2 / N
N St .84 S Siiq.8t41 \ 7 t+2,9t+2

SARSA update rule:
AQt(St- (Lt) = Oci[?’t_+_1 =T f\,""Qt('St—{—l- (Lt_|_1) — Qt(st- (Lt)]

31/01/2017 Reinforcement Learning

20

TD for Control: Learning O-Values

e Choose a behaviour policy 7 and estimate the Q-values (Q™) using the SARSA
update rule. Change 7 towards greediness wrt Q™.

e Use e-greedy or e-soft policies.

e Converges with probability 1 to optimal policy and Q-values if visit all state-
action pairs infinitely many times and policy converges to greedy policy, e.g. by
arranging for ¢ to tend towards O.

Remember: learning optimal Q-values is useful since it tells us immediately
which is(are) the optimal action(s) — they have the highest Q-value

31/01/2017 Reinforcement Learning 21

Algorithm: SARSA

e |nitialise (s, a)

e Repeat many times
— Pick s, a
— Repeat each step to goal
« Do a, observe r, s
x Choose a’ based on Q(s',d’) e-greedy

x Q(s,a) =Q(s,a) +alr +vQ(s',d") — Q(s,a)]
x s=s5,a=ad
— Until s terminal (where Q(s’,a") = 0)
Use with policy iteration, i.e. change policy each time to be greedy wrt current
estimate of ()

Example: windy gridworld, S+B sect. 6.4

31/01/2017 Reinforcement Learning 22

Windy Gridworld

standard

moves

31/01/2017

0O 001 11 2 2120

undiscounted, episodic, reward = -1 until goal

Reinforcement Learning

king's
moves

23

Results of Sarsa on the Windy Gridworld

170 - P
150 -
s— G
' PUER
100 -
Episodes 0001112210

50 -

0-

0 1000 2000 3000 4000 5000 6000 7000 8000
Time steps

31/01/2017 Reinforcement Learning 24

(-Learning

SARSA is an example of on-policy learning. Why?

Q-LEARNING is an example of off-policy learning
Update rule:

AQi(si,ar) = alrie -|-£q, max Q(St41, aﬂ — Q(s¢, ar)]

Always update using maximum () value available from next state: then () = Qx,
optimal action-value function

31/01/2017 Reinforcement Learning 25

Algorithm: O-Learning

e |nitialise (s, a)

e Repeat many times
— Pick s start state
— Repeat each step to goal
x Choose a based on Q)(s,a) e-greedy

* Do a, observe r, s

x Q(s,a) = Q(s,a) + afr +ymax, Q(s',ad") — Q(s,a)]
* 5 =5
— Until s terminal

31/01/2017 Reinforcement Learning

26

Backup Diagrams: SARSA and Q-Learning

®sa Qsa) Sa Qsa)
r r
S SARSA Al Q-LEARNING
/" MAX \
® © & a o
a@® Q(sa) Q(s’,a)
a a*

SARSA backs up using the action @’ actually chosen by the behaviour policy.

Q-LEARNING backs up using the ()-value of the action a’* that is the best next
action, i.e. the one with the highest @) value, Q(s’,a’™). The action actually
chosen by the behaviour policy and followed is not necessarily a’*

31/01/2017 Reinforcement Learning 27

Cliffwalking

Y

safe path

> optimal path
S The Cliff G

e—greedy, € =0.1

Sarsa

-25-

Reward _so- _
per Q-learning

epsiode

~754

-100 T T T T 1
0 100 200 300 400 500

31/01/2017 ReinforcErpis odese

28

(-Learning vs. SARSA

QL: Q(s,a) = Q(s,a) + afr + ymax, Q(s", a") — Q(s, a)] off-policy
SARSA: Q(s,a) = Q(s,a)+ a[r + vQ(s',a’") — Q(s, a)] on-policy
In the cliff-walking task:

QL: learns optimal policy along edge

SARSA: learns a safe non-optimal policy away from edge

e-greedy algorithm

For e #0 SARSA performs better online. Why?

For ¢ — 0 gradually, both converge to optimal.

31/01/2017 Reinforcement Learning 29

Summary

* |dea of Temporal Difference Prediction

e 1-step tabular model-free TD method

* Can extend to the GPI approach:
— On-policy: SARSA
— Off-policy: Q-learning

 TD methods bootstrap and sample, combining benefits of DP
and MC methods

31/01/2017 Reinforcement Learning 30

