Reinforcement Learning

On- and Off-Policy Learning

Subramanian Ramamoorthy School of Informatics

3 February, 2017

Can We Avoid Thorny Assumptions?

- Two major MC assumptions (infinite sampling and exploring all states) are unrealistic. How to circumvent the issue?
- Need to continually explore, ε-soft policies:
 - On-policy method: Explore in an ε -greedy manner
 - Off-policy method: Use a behaviour policy that is good at exploring, then infer optimal policy from that

On-Policy Monte Carlo Control

- Overall idea is still that of Generalized Policy Iteration (move towards greedy policy), but throw in continual exploration
- In order to always explore, we want to keep policy ε-soft:

$$\pi(s, a) > 0, \forall s, \forall a$$

Moreover, one may really wish to adopt an ε-greedy policy:

$$\pi(s,a) = \frac{\epsilon}{|\mathcal{A}|}$$
, if a is not the greedy choice
$$= 1 - \epsilon + \frac{\epsilon}{|\mathcal{A}|}$$
, if a is the greedy choice

• In this case, we have $\pi(s,a) > \frac{\epsilon}{|\mathcal{A}|}, \forall s, \forall a$

On-Policy MC Control

```
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
```

 $Q(s, a) \leftarrow \text{arbitrary}$ $Returns(s, a) \leftarrow \text{empty list}$ $\pi \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}$

Repeat forever:

- (a) Generate an episode using π
- (b) For each pair s, a appearing in the episode:

 $R \leftarrow \text{return following the first occurrence of } s, a$ Append R to Returns(s, a)

$$Q(s, a) \leftarrow \text{average}(Returns(s, a))$$

(c) For each s in the episode:

$$a^* \leftarrow \arg\max_a Q(s, a)$$

For all $a \in \mathcal{A}(s)$:

$$\pi(s,a) \leftarrow \left\{ \begin{array}{ll} 1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| & \text{if } a = a^* \\ \varepsilon/|\mathcal{A}(s)| & \text{if } a \neq a^* \end{array} \right.$$

Evaluate as before

Improve towards ε -greedy, not the max

The Policy Improvement Step

• Any ε -greedy policy w.r.t. Q^{π} is an improvement over any ε soft policy π (Policy Improvement Theorem)

$$Q^{\pi}(s,\pi'(s,a)) = \sum_{a} \pi'(s,a)Q^{\pi}(s,a)$$

$$\varepsilon \text{ - greedy policy} = \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} Q^{\pi}(s,a) + (1-\epsilon) \max_{a} Q^{\pi}(s,a)$$

$$\geq \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} Q^{\pi}(s,a) + (1-\epsilon) \sum_{a} \frac{\pi(s,a) - \frac{\epsilon}{|\mathcal{A}(s)|}}{1-\epsilon} Q^{\pi}(s,a)$$
This is bounded above by,
$$= \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} Q^{\pi}(s,a) - \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} Q^{\pi}(s,a) + \sum_{a} \pi(s,a)Q^{\pi}(s,a)$$

$$= V^{\pi}(s)$$

Off-policy Method

- Evaluate one policy while following another one
 - Behaviour policy takes you around the environment
 - Estimation policy is what you are after
- Of course, this requires: $\pi(s,a) > 0 \implies \pi'(s,a) > 0, \forall s, \forall a$
- Then, the off-policy procedure works as follows:
 - Compute the weighted average of returns from behaviour policy
 - Weighting factors are the probability of the moves being in estimation policy
 - i.e., weight each return by relative probability of being generated by π and π'

Learning a Policy while Following Another

On the ith first visit to state s, let:

 $p_i'(s) = \text{probability of getting subsequent sequence of states and actions from } \pi'$ (BEHAVIOUR) T is the end-of-episode time

$$p_i'(s_t) = \prod_{k=t}^{T_i(s)-1} \pi'(s_k, a_k) P_{s_k s_{k+1}}^{a_k}$$
 Using this to get data

 $R_i'(s) = \text{return observed from following the behaviour policy through this sequence}$ of states and actions

Learning a Policy while Following Another

Let $p_i(s) =$ probability of getting the same sequence of states and actions from π (ESTIMATION)

$$p_i(s_t) = \prod_{k=t}^{T_i(s)-1} \pi(s_k, a_k) P_{s_k s_{k+1}}^{a_k}$$

Then after n_s returns experienced from state s (so episodes in which s occurs), weight each return by relative probability of occurring in π and π' and average:

$$V^{\pi}(s) = \frac{\sum_{i=1}^{n_s} \frac{p_i(s)}{p'_i(s)} R'_i(s)}{\sum_{i=1}^{n_s} \frac{p_i(s)}{p'_i(s)}}$$

Comparing the two Probabilities

$$p_{i}(s_{t}) = \prod_{k=t}^{T_{i}(s)-1} \pi(s_{k}, a_{k}) P_{s_{k}s_{k+1}}^{a_{k}}$$

$$p'_{i}(s_{t}) = \prod_{k=t}^{T_{i}(s)-1} \pi'(s_{k}, a_{k}) P_{s_{k}s_{k+1}}^{a_{k}}$$

$$\frac{p_{i}(s_{t})}{p'_{i}(s_{t})} = \prod_{k=t}^{T_{i}(s)-1} \frac{\pi(s_{k}, a_{k})}{\pi'(s_{k}, a_{k})}$$

So the weighting factors don't depend on environment, only on the two policies. How can we use this?

Off-Policy MC Algorithm

How to use this formula to get Q-values?

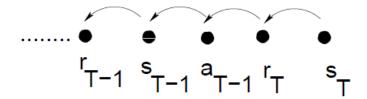
- Use Behaviour Policy π' to generate moves
 - must be soft so that all (s,a) continue to be explored
- ullet Evaluate and improve Estimation Policy π
 - converges to optimal policy

So...

- 1. BP π' generates episode
- 2. EP π is deterministic and gives the greedy actions w.r.t. the current estimate of Q^{π} (it is arbitrary for the first episode)

Off-Policy MC Algorithm, cont.

3. Start at end of episode, work backwards



till BP and EP give divergent actions, e.g. back to time t

4. For this chain of states and actions compute

$$\frac{p_i(s_t)}{p_i'(s_t)} = \prod_{k=t}^{T_i(s)-1} \frac{\pi(s_k, a_k)}{\pi'(s_k, a_k)}$$

 π is deterministic so $\pi(s_k, a_k)$ etc. = 1 and we know π'

Off-Policy MC Algorithm, cont.

So

$$\frac{p_i(s_t)}{p_i'(s_t)} = \prod_{k=t}^{T_i(s)-1} \frac{1}{\pi'(s_k, a_k)}$$

5.

$$Q(s, a) = \frac{\sum \frac{p_i}{p_i'} R'}{\sum \frac{p_i}{p_i'}}$$

Sum is over no. times this (s,a) has been visited, say N

R'= return for the chain of states/actions (see 3) following (s,a) (it's different for each of the N visits, as is p/p')

Off-Policy MC Algorithm, cont.

- 6. Do for each (s, a) in chain (see 3)
- 7. Improve π (estimation policy) to be greedy w.r.t. Q:

$$\pi(s) = \arg\max_a Q(s, a)$$

(Still deterministic, so still 1 for transitions within it.)

8. Back to 1. Repeat until estimation policy and Q values converge.

Takes a long time because we can only use the information from the end of the episode in each iteration.

The Off-Policy MC Control Algorithm

```
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
   Q(s, a) \leftarrow \text{arbitrary}
                      ; Numerator and
   N(s,a) \leftarrow 0
   D(s,a) \leftarrow 0 ; Denominator of Q(s,a)
   \pi \leftarrow an arbitrary deterministic policy
Repeat forever:
    (a) Select a policy \pi' and use it to generate an episode:
            s_0, a_0, r_1, s_1, a_1, r_2, \ldots, s_{T-1}, a_{T-1}, r_T, s_T
    (b) \tau \leftarrow latest time at which a_{\tau} \neq \pi(s_{\tau})
    (c) For each pair s, a appearing in the episode after \tau:
           t \leftarrow the time of first occurrence (after \tau) of s, a
           w \leftarrow \prod_{k=t+1}^{T-1} \frac{1}{\pi'(s_k, a_k)}
           N(s,a) \leftarrow N(s,a) + wR_t
           D(s,a) \leftarrow D(s,a) + w
           Q(s,a) \leftarrow \frac{N(s,a)}{D(s,a)}
    (d) For each s \in \mathcal{S}:
           \pi(s) \leftarrow \arg\max_a Q(s, a)
```

Incremental Implementation

- Better to implement MC incrementally (think memory...)
- To compute the weighted average of each return:

$$V_{n} = \frac{\sum_{k=1}^{n} w_{k} R_{k}}{\sum_{k=1}^{n} w_{k}} \qquad V_{n+1} = V_{n} + \frac{w_{n+1}}{W_{n+1}} [R_{n+1} - V_{n}]$$

$$W_{n+1} = W_{n} + w_{n+1}$$

$$V_{0} = W_{0} = 0$$

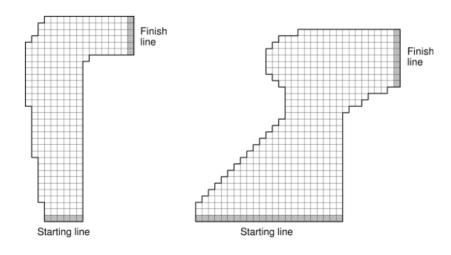
non-incremental

incremental equivalent

We may also wish to assign relative weights to different episodes...

Racetrack Example

- Go as fast as possible but do not skid off the track
- Velocity = #grid cells (h/v) per time step, bounded
- Noise added to actions
- State/action space?
- Reward
- Episode?
- On-policy/off-policy learning?



Racetrack Example

Track Layout



State Value Function

