
Reinforcement	Learning	
	

Dynamic	Programming;	
Monte	Carlo	Methods	

Subramanian	Ramamoorthy	
School	of	Informa=cs	

	
27	January	2017	

Recap:	Key	Quan--es	defining	an	MDP	

•  System	dynamics	are	
stochas-c	–	represented	by	a	
probability	distribu-on.	

•  Problem	is	defined	as	
maximiza-on	of	expected	
rewards	

–  Recall	that		E(X)	=	Σ	xi p(xi)
 for	finite-state	systems	

27/01/2017	 Reinforcement	Learning	 2	

Recap:	Decision	Criterion	

				What	is	the	criterion	for	op-miza-on	(i.e.,	learning)?	

20/01/17	 3	

 Rt = rt+1 +γ rt+2 +γ
2rt+3 +!= γ krt+k+1,

k=0

∞

∑

where γ, 0 ≤ γ ≤1, is the discount rate.

Effect of changing γ?

Reinforcement	Learning	

Nota-on	for	Episodic	vs.	Infinite	

•  In	(discrete)	episodic	tasks,	we	could	number	the	-me	
steps	of	each	episode	star-ng	from	zero.	

•  We	usually	do	not	have	to	dis-nguish	between	episodes,	
so	we	write							instead	of										for	the	state	at	step	t	of	
episode	j.	

•  Think	of	each	episode	as	ending	in	an	absorbing	state	that	
always	produces	reward	of	zero:	

•  We	can	cover	all	cases	by	wri-ng	

st st, j

 Rt = γ krt+k+1,
k=0

∞

∑

where γ can be 1 only if a zero reward absorbing state is always reached.

20/01/17	 4	Reinforcement	Learning	

Three	Aspects	of	the	RL	Problem	

•  Planning	
The	MDP	is	known	(states,	ac-ons,	transi-ons,	rewards).	
	Find	an	op-mal	policy,	π*!	

•  Learning	
The	MDP	is	unknown.	You	are	allowed	to	interact	with	it.		
	Find	an	op-mal	policy	π*!	

•  Op=mal	learning	
While	interac-ng	with	the	MDP,	minimize	the	loss	due	to	not	
using	an	op-mal	policy	from	the	beginning.	

27/01/2017	 Reinforcement	Learning	 5	

Solving	MDPs	–	Many	Dimensions	

•  Which	problem?	(Planning,	learning,	op-mal	learning)	
•  Exact	or	approximate?	
•  Uses	samples?	
•  Incremental?	
•  Uses	value	func-ons?	

–  Yes:	Value-func-on	based	methods	
•  Planning:	DP,	Random	Discre-za-on	Method,	FVI,	…	
•  Learning:	Q-learning,	Actor-cri-c,	…	

–  No:	Policy	search	methods	
•  Planning:	Monte-Carlo	tree	search,	Likelihood	ra-o	methods	(policy	
gradient),	Sample-path	op-miza-on	(Pegasus),	…	

•  Representa-on	
–  Structured	state:	

•  Factored	states,	logical	representa-on,	…	
–  Structured	policy	space:	

•  Hierarchical	methods	

27/01/2017	 Reinforcement	Learning	 6	

Value	Func-ons	

•  Value	func-ons	are	used	to	determine	how	good	it	is	for	the	agent	
to	be	in	a	given	state	
–  Or,	how	good	is	it	to	perform	an	ac-on	from	a	given	state?	

•  This	is	defined	w.r.t.	a	specific	policy,	i.e.,	distribu-on	π(s,a)	
•  State	value	func-on:	

•  Ac-on	(or	State-Ac-on)	value	func-on:	

27/01/2017	 Reinforcement	Learning	 7	

Value	Func-ons	

Note	that	there	are	mul-ple	sources	of	(probabilis-c)	uncertainty:	
•  In	state	s,	one	is	allowed	to	select	different	ac-ons	a
•  The	system	may	transi-on	to	different	states	s’	from	s	
•  Depending	on	the	above,	return	(defined	in	terms	of	reward)	is	a	

random	variable	–	which	we	seek	to	maximize	in	expecta-on	

27/01/2017	 Reinforcement	Learning	 8	

Recursive	Form	of	V	–	Bellman	Equa=on	

27/01/2017	 Reinforcement	Learning	 9	

Expand 1-step forward
& rewrite expectation

Backup	Diagrams	

•  If	you	go	all	the	way	‘down’,	you	can	just	read	off	the	reward	value	
•  The	backup	process	(i.e.,	recursive	equa-on	above)	allows	you	to	

compute	the	corresponding	value	at	current	state	
–  taking	transi-on	probabili-es	into	account	

27/01/2017	 Reinforcement	Learning	 10	

Bellman	Equa-on	for	Q
(State-Action Value Function)

27/01/2017	 Reinforcement	Learning	 11	

Op(mal	Value	Func-on	

•  For	finite	MDPs,	
•  Let	us	denote	the	op-mal	policy	π*

•  	The	corresponding	op-mal	value	func-ons	are:	

•  From	this,	

•  Will	there	always	be	a	well	defined	π* ?	
	Theorem	[Blackwell,	1962]	–	For	every	MDP	with	finite	state/ac-on	
space,	there	exists	an	op-mal	determinis-c	sta-onary	plan	

27/01/2017	 Reinforcement	Learning	 12	

Recursive	Form	of	V*	

27/01/2017	 Reinforcement	Learning	 13	

Backup	for	Q*			

27/01/2017	 Reinforcement	Learning	 14	

What	is	Dynamic	Programming?	

	
	Given	a	known	model	of	the	environment	as	an	MDP	
(transi-on	dynamics	and	reward	probabili-es),		
		
	DP	is	a	collec-on	of	algorithms	for	compu-ng	op-mal	policies	
(via	Op-mal	Value	Func-ons)	

27/01/2017	 Reinforcement	Learning	 15	

Policy	Evalua-on	

	How	to	compute	V(s)	for	an	arbitrary	policy	π?	(Predic(on	problem)	
	
	
For	a	given	MDP,	this	yields	a	system	of	simultaneous	equa-ons	

–  as	many	unknowns	as	states	
–  Solve	using	linear	algebraic	computa-on	

	
Solve	itera-vely,	with	a	sequence	of	value	func-ons,		
	

27/01/2017	 Reinforcement	Learning	 16	

Computa-onally…	

	We	could	achieve	this	in	a	number	of	different	ways:	
•  Maintain	two	arrays,	compu-ng	itera-ons	over	one	and	copying	

results	to	the	other	
•  In-place:	Overwrite	as	new	backed-up	values	become	available	
•  It	can	be	shown	that	this	algorithm	will	also	converge	to	op-mality	

(somewhat	faster,	even)	
–  Backups	sweep	through	the	space	
–  Sweep	order	has	significant	influence	on	convergence	rates	

27/01/2017	 Reinforcement	Learning	 17	

Itera-ve	Policy	Evalua-on	

27/01/2017	 Reinforcement	Learning	 18	

Grid-World	Example	

27/01/2017	 Reinforcement	Learning	 19	

Itera-ve	Policy	Evalua-on	in	Grid	World	

27/01/2017	 Reinforcement	Learning	 20	

Note:	The value function can be searched
greedily to find long-term optimal actions

Policy	Improvement	

	Does	it	make	sense	to	deviate	from	π(s)	at	any	state	(following	the	
policy	everywhere	else)?	

27/01/2017	 Reinforcement	Learning	 21	

-  Policy Improvement Theorem [Howard/Blackwell]

Key	Idea	Behind	Policy	Improvement	

27/01/2017	 Reinforcement	Learning	 22	

Compu-ng	Berer	Policies	

	Star-ng	with	an	arbitrary	policy,	we’d	like	to	approach	truly	op-mal	
policies.	So,	we	compute	new	policies	using	the	following,	

	
	
	
	
	
	Are	we	restricted	to	determinis-c	policies?	No.	
	 	With	stochas-c	policies,		

27/01/2017	 Reinforcement	Learning	 23	

Policy	Itera-on	

	We	can	combine	policy	evalua-on	and	improvement	to	obtain	a	
sequence	of	monotonically	improving	policies	and	value	func-ons	

–  Each	policy	is	guaranteed	to	be	a	strict	improvement	over	
previous	one	(unless	it	is	already	op-mal)	

	[Policy	Improvement	Theorem]	

–  As	a	finite	MDP	admits	finitely	many	policies,	this	eventually	
converges	to	an	op-mal	policy	

27/01/2017	 Reinforcement	Learning	 24	

Policy	Itera-on	Algorithm	

27/01/2017	 Reinforcement	Learning	 25	

Example:	Jack’s	Car	Rental	

•  £10	for	each	car	rented	(must	be	available	when	request	received)	
•  Two	loca-ons,	maximum	of	20	cars	at	each	
•  Cars	returned	and	requested	randomly	

–  Poisson	distribu-on,	n	returns/requests	with	probability		
–  Loca-on	1:	Average	requests	=	3,	Average	returns	=	3	
–  Loca-on	2:	Average	requests	=	4,	Average	Returns	=	2	

•  Can	move	up	to	5	cars	between	loca-ons	overnight	(costs	£2	each)	

Problem	setup:	
•  States,	ac-ons,	rewards?	
•  Transi-on	probabili-es?	

27/01/2017	 Reinforcement	Learning	 26	

Solu-on:	Jack’s	Car	Rental	

27/01/2017	 Reinforcement	Learning	 27	

Numbers indicate
action: #cars to move

Value

Points	to	Ponder:	Jack’s	Car	Rental	

•  Suppose	first	car	moved	is	free	but	all	others	transfers	cost	£2	
–  From	Loca-on	1	to	Loca-on	2	(not	other	direc-on!)	
–  Because	an	employee	would	anyway	go	in	that	direc-on,	by	bus	

•  Suppose	only	10	cars	can	be	parked	for	free	at	each	loca-on	
–  More	than	10	incur	fixed	cost	£4	for	using	an	extra	parking	lot	

	 	…	typical	examples	of	‘real-world	nonlineari(es’	

27/01/2017	 Reinforcement	Learning	 28	

Value	Itera-on	

27/01/2017	 Reinforcement	Learning	 29	

Each step in Policy Iteration needs Policy Evaluation (upto convergence)
- can we avoid this computational overhead?

… use Bellman equation
as update rule

Value	Itera-on	Algorithm	

27/01/2017	 Reinforcement	Learning	 30	

Example:	Gambler’s	Problem	

•  Gambler	can	repeatedly	bet	on	a	coin	flip	
•  Heads:	wins	stake;	Tails:	loses	his	money	
•  Ini-al	capital	∈	{$1,	$2,	…	,	$99}	
•  Gambler	has	won	if	he	reaches	$100	and	has	lost	if	he	goes	

bankrupt	($0)	
•  Unfair	coin:	p(H)	=	0.4,	p(T)	=	0.6	

Problem	formula-on:	
•  States,	Ac-ons,	Rewards?	
•  State	transi-ons?	

27/01/2017	 Reinforcement	Learning	 31	

Solu-on	to	Gambler’s	Problem	

27/01/2017	 Reinforcement	Learning	 32	

Based on successive
sweeps of value iteration

Why does it look
so strange?

Generalized	Policy	Itera-on	

Caricature	of	the	process:	
	
	
	
	
	
	
	Builds	on	the	no-on	of	
interleaving	evalua-on	and	
improvement	–	but	allows	the	
granularity	to	be	flexible	

27/01/2017	 Reinforcement	Learning	 33	

Monte	Carlo	Methods	

•  Learn	value	func-ons	
•  Discover	op-mal	policies	
•  Do	not	assume	knowledge	of	model	as	in	DP,	i.e.,		

•  Learn	from	experience:	Sample	sequences	of	states,	ac-ons	
and	rewards	(s, a, r)	
–  In	simulated	or	real	(e.g.,	physical	robo-c)	worlds	
–  Clearly,	simulator	is	a	model	but	not	a	full	one	as	in	a	prob.	

distribu-on	

•  Eventually	arain	op-mal	behaviour	(same	as	with	DP)	

27/01/2017	 Reinforcement	Learning	 34	

Pa
ss0 ,Ra

ss0

Learning	in	MDPs	

•  You	are	learning	from	a	long	
stream	of	experience:	

	
	…	up	to	some	terminal	state	

•  Direct	methods:		
Approximate	value	func-on	
(V/Q)	straight	away	-	
without	compu-ng	

31/01/2017	 35	Reinforcement	Learning	

s0a0r0s1a1r1...skakrk...

Pa
ss0 ,Ra

ss0

Pictorial:	What	does	DP	Do?	

27/01/2017	 Reinforcement	Learning	 36	

Pictorial:	What	does	Simple	MC	Do?	

27/01/2017	 Reinforcement	Learning	 37	

Monte	Carlo	Policy	Evalua-on	

•  Goal:	Approximate	a	value	func-on	
•  Given:	Some	number	of	episodes	under	π	which	contain	s		
•  Maintain	average	returns	ayer	visits	to	s

•  First	visit	vs.	Every	visit	MC:	
–  Consider	a	reward	process																																								and	define	the	
first	visit	-me,																									,						and	a	set,		

–  First	visit	MC	averages		
	whereas	every	visit	MC	averages	over		

27/01/2017	 Reinforcement	Learning	 38	

What is the effect of π?
What if it is deterministic?

First-visit	Monte	Carlo	Policy	Evalua-on	

27/01/2017	 Reinforcement	Learning	 39	

Example:	Blackjack	

•  Goal:	Achieve	a	card	sum	
greater	than	dealer	without	
exceeding	21	

•  Player’s	op-ons:	Hit	(take	
another	card)	or	S-ck	(pass)	
–  If	player	crosses	21	-	loss	

•  Dealer	follows	simple	rule:	
	S-ck	if	≥	17,	else	Hit	

•  Result:		
	Closest	to	21	wins	
	Equally	close	is	a	draw	

27/01/2017	 Reinforcement	Learning	 40	

Example:	Blackjack	

•  Goal:	Achieve	a	card	sum	greater	than	dealer	without	
	exceeding	21	

•  State	space:	(200	states)	
–  Current	sum	(12	–	21)	
–  Dealer’s	showing	card	(ace	-	10)	
–  Do	I	have	a	usable	ace	(can	be	used	as	11	without	overshoot)?	

•  Reward:	+1	for	win,	0	for	loss,	-1	for	a	loss	
•  Ac-on	space:	s(ck	(no	more	cards),	hit	(receive	another	card)	
•  Policy:	s(ck	if	sum	is	20	or	21,	else	hit	
	 	Note:	This	is	an	(arbitrary)	policy	π	with	which	algorithm	works	

27/01/2017	 Reinforcement	Learning	 41	

Solu-on	()	:	Blackjack	

27/01/2017	 Reinforcement	Learning	 42	

Why is this
more choppy?

Remarks	on	Blackjack	Example	

•  Why	does	the	value	func-on	jump	up	for	the	last	two	rows	in	
the	rear?	
–  When	sums	correspond	to	20	or	21,	policy	is	to	s(ck;	this	is	a	
good	choice	in	this	region	of	state	space	

•  Why	does	it	drop	off	for	the	whole	last	row	on	the	ley?	
–  Dealer	is	showing	an	ace,	which	gives	him	extra	flexibility	(two	
chances	to	get	close	to	21)	

•  Why	are	the	foremost	values	higher	on	upper	plots	than	
lower	plots?	
–  Player	has	usable	ace	(more	flexibility)	

27/01/2017	 Reinforcement	Learning	 43	

Backup	in	MC	

•  Does	the	concept	of	backup	diagram	make	sense	for	MC	
methods?	

•  As	in	figure,	MC	does	not	sample	all	transi-ons	
–  Root	node	to	be	updated	as	before	
–  Transi-ons	are	dictated	by	policy	
–  Acquire	samples	along	a	sample	path	
–  Clear	path	from	eventual	reward	to	states	
	along	the	way	(credit	assignment	easier)	

•  Es-mates	are	different	states	are	independent	
–  Computa-onal	complexity	not	a	func-on	of	state	
dimensionality	

27/01/2017	 Reinforcement	Learning	 44	

Monte	Carlo	Es-ma-on	of	Ac-on	Values	

•  Model	is	not	available,	so	we	do	not	know	how	states	and	
ac-ons	interact	
– We	want	Q*	

•  We	can	try	to	approximate	Qπ(s,a)	using	Monte	Carlo	method	
–  Asympto-c	convergence	if	every	state-ac-on	pair	is	visited	

•  Explore	many	different	star-ng	state-ac-on	pairs:	Equal	
chance	of	star-ng	from	any	given	state	
–  Not	en-rely	prac-cal,	but	simple	to	understand	

27/01/2017	 Reinforcement	Learning	 45	

Monte	Carlo	Control	

•  Policy	Evalua-on:	
	Monte	Carlo	method	

•  Policy	Improvement:	
	Greedify	with	respect	to	
state-value	of	ac-on-value	
func-on	

27/01/2017	 Reinforcement	Learning	 46	

Convergence	of	MC	Control	

•  Policy	improvement	s-ll	works	if	evalua-on	is	done	with	MC:	

•  πk+1	≥	πk	by	the	policy	improvement	theorem	
•  Assump-on:	exploring	starts	and	infinite	number	of	episodes	

for	MC	policy	evalua-on	(i.e.,	value	func-on	has	stabilized)	
•  Things	to	do	(as	in	DP):	

–  update	only	to	given	tolerance	
–  interleave	evalua-on/improvement	

27/01/2017	 Reinforcement	Learning	 47	

Monte	Carlo	Exploring	Starts	

27/01/2017	 Reinforcement	Learning	 48	

Blackjack	Example	–	Op-mal	Policy	

27/01/2017	 Reinforcement	Learning	 49	

