Reinforcement Learning

Dynamic Programming;
Monte Carlo Methods

Subramanian Ramamoorthy
School of Informatics

27 January 2017

Recap: Key Quantities defining an MDP

o System dynamics are State Transition Dynamics:
stochastic — represented by a
probability distribution.

P, = Pr{sis1 =5s'|s; =s,a; = a}

. . Expected Rewards:

* Problem is defined as P
maximization of expected RO, = E{riy1|s; = 8,00 = a, 8,41 = 8}

rewards
Note that:
Re =3 o PeuRey

— Recall that E(X) = Z xip(x))
for finite-state systems

27/01/2017 Reinforcement Learning

Recap: Decision Criterion

What is the criterion for optimization (i.e., learning)?

R t+1 y t+2 t+3 Ey t+k+1°

where y,0 <y <1, is the discount rate.

Effect of changing y?

20/01/17 Reinforcement Learning

Notation for Episodic vs. Infinite

* In (discrete) episodic tasks, we could number the time
steps of each episode starting from zero.

 We usually do not have to distinguish between episodes,
so we write S, instead of §, ; for the state at step t of
episode j.

* Think of each episode as ending in an absorbing state that
always produces reward of zero:

k=0
where ¥ can be 1 only if a zero reward absorbing state 1s always reached.

Three Aspects of the RL Problem

* Planning
The MDP is known (states, actions, transitions, rewards).

Find an optimal policy, !

* Learning
The MDP is unknown. You are allowed to interact with it.

Find an optimal policy 7!

* Optimal learning
While interacting with the MDP, minimize the loss due to not
using an optimal policy from the beginning.

27/01/2017 Reinforcement Learning

Solving MDPs — Many Dimensions

Which problem? (Planning, learning, optimal learning)
Exact or approximate?
Uses samples?
Incremental?
Uses value functions?
— Yes: Value-function based methods
* Planning: DP, Random Discretization Method, FVI, ...
e Learning: Q-learning, Actor-critic, ...
— No: Policy search methods

* Planning: Monte-Carlo tree search, Likelihood ratio methods (policy
gradient), Sample-path optimization (Pegasus), ...

Representation
— Structured state:

* Factored states, logical representation, ...
— Structured policy space:

e Hierarchical methods

27/01/2017 Reinforcement Learning

Value Functions

Value functions are used to determine how good it is for the agent
to be in a given state

— Or, how good is it to perform an action from a given state?

This is defined w.r.t. a specific policy, i.e., distribution 7t(s,a)

St = S}

Action (or State-Action) value function:

State value function:

o0

V7(s) = Ex{Ri|s;=s} = EW{Z 7"A."z+k|1

k=0

Q" (s,a) = E.{Ri|s;=s,a; = a} = E”{Z N S,

k=0

St=S8,04 = (l}

27/01/2017 Reinforcement Learning

Value Functions

Note that there are multiple sources of (probabilistic) uncertainty:
* |nstates, one is allowed to select different actions a
* The system may transition to different states s’ from s

 Depending on the above, return (defined in terms of reward) is a
random variable — which we seek to maximize in expectation

VTi(s) =

j -
o0
= E~r Z A't+k 1\%—9}
—()

{ Re|st

ol

o N k.. .
— Eﬂ{’t—}-l + E Y It+;‘.+2\.st = s}
k=0

27/01/2017 Reinforcement Learning

Recursive Form of J— Bellman Equation

V7 (s) = Ex{ris1 +7 Y peo Y risrsa|s: = s}

Expand 1-step forward

We rewrite as follows: : :
& rewrite expectation

e Firstterm:) m(s,a)) ., PL/RE,

e Second term: Y, m(s,a) 3. PLAERY re oV Tisrsolsis1 = 8}

SV (s) = 3, m(s,a) o9 Pe[RE + YEr {3520 VT taks2lst41 = 8}

Vi(s) = 2.am(8,0) 2o Poa[Rey + V7 ()]

27/01/2017 Reinforcement Learning 9

Backup Diagrams

Backup diagrams for (a) V'™ and (b) @

If you go all the way ‘down’, you can just read off the reward value

The backup process (i.e., recursive equation above) allows you to
compute the corresponding value at current state

— taking transition probabilities into account

27/01/2017 Reinforcement Learning

10

Q" (s, a)

27/01/2017

Bellman Equation for O
(State-Action Value Function)

E {Ri|s = s,a; = a}

o0
En{ E’Ykrt+k+1|3t = S,0¢ = G«}
k=0

o0
Ew{rt+l +7 Z'Yk'rt+k+2|3t = S5,a¢ = a}
k=0

o0
Z Pgs/ [R,gs/ — ’)’Eﬂ-{ Z '}’k'rt_*_k_*_QlSt = 8,}]
s’ k=0

00
Z pgé’ [R’gs’ + 8 E 7‘-(8,7 al)E'ir{ Z 7krt+k+2|3t+1 — 8,, A1 = a,}]
a’ k=0

Y PL R+ w(s,ad)QT (s, d)]

Reinforcement Learning 11

Optimal Value Function

* For finite MDPs, 7 =7 < V7(s) 2V (s)¥s€S
e Let us denote the optimal policy 7~

* The corresponding optimal value functions are:

V*(s) = max V7 (s)

Q" (s,a) =max Q" (s, a)
* From thiS, Q*(s,a) = E{ric1 + YV (s411) | s1=s8,a,=a}
* Will there always be a well defined 7* ?

Theorem [Blackwell, 1962] — For every MDP with finite state/action
space, there exists an optimal deterministic stationary plan

27/01/2017 Reinforcement Learning 12

27/01/2017

V*(s)

Recursive Form of I*

max QT (s.
aGA(s)Q (S'a)

méa.xEﬂ*{RAst =s,a, =a}

o0
mgx Er- { Z ’YkT’t+k+1|8t = $,at = a}

k=0
o0
k / /
max Er- {ri41+7 > Vrisrsolsir = a1 = d'}
| k=0

. E{rig1 + YV (5041) 5041 = 8, a1 = @'}

max Z Pl Ry +V*(s")]

Reinforcement Learning

13

27/01/2017

Backup for O°

Q*(s,a) = E{res1+ymaxQ*(s+1,a')|se = s,ac = a}
a

= Y PL[RY +ymaxQ*(s',a)]
a
S,

(a) S (b) S,da

max r

r max

s’ a

Backup diagrams for (a) V' * and (b) @°

Reinforcement Learning

14

What is Dynamic Programming?

Given a known model of the environment as an MDP
(transition dynamics and reward probabilities),

DP is a collection of algorithms for computing optimal policies
(via Optimal Value Functions)

27/01/2017 Reinforcement Learning 15

Policy Evaluation

How to compute V(s) for an arbitrary policy 7? (Prediction problem)

V() = Lam(s,0) Ly Pl [Rey +V7(s")]

For a given MDP, this yields a system of simultaneous equations
— as many unknowns as states
— Solve using linear algebraic computation

Solve iteratively, with a sequence of value functions, V,, Vi, V5, ...: S — R
Vit1(s) =Y, m(s,a) o PL R, +4Vi(s')] Vs € S

Vi = V'™ is a fixed-point for these updates, as k — o<
- [terative policy evaluation.

27/01/2017 Reinforcement Learning 16

Computationally...

“"'rk—l (g) — Z-a ﬂ'(S, (l.) Zs’ P?Q’ [qu, + ’N"}‘(Ql)] vse S

We could achieve this in a number of different ways:

* Maintain two arrays, computing iterations over one and copying
results to the other

* In-place: Overwrite as new backed-up values become available

It can be shown that this algorithm will also converge to optimality
(somewhat faster, even)

— Backups sweep through the space

— Sweep order has significant influence on convergence rates

27/01/2017 Reinforcement Learning 17

27/01/2017

Iterative Policy Evaluation

Input 7, the policy to be evaluated
Initialize V' (s) = 0, for all s € §*
Repeat
A0
For each s € S:
v— V(s)
‘/(‘5) — Za 71'(8, (l.) Zs’ .:9’ [RZG’ + '}V(b,)]
A — max(A, |[v — V(s)|)
until A < @ (a small positive number)
Output V= V7

Reinforcement Learning

18

Grid-World Example

4 Is |6 |7 r=—1
on all transitions

actions

12 |13 |14

Four possible actions: A = { up, down, right, left}

- the actions change state deterministically (but, not allowed to go off grid)

right right right _

Encoded in transition probabilities, e.g., Pr’ =1LPs5n =0.P;%

Undiscounted, episodic task with reward —1 everywhere except goal states.

27/01/2017 Reinforcement Learning

19

Iterative Policy Evaluation in Grid World

Vj, for the Greedy Policy
Random Policy wrt Vi
0.0{ 0.0] 0.0 0.0 ENPEIN 0.0]-2.4]-2.9]-3.0 - |9
. t g
k=0 0.0{ 0.0] 0.0 0.0 > random k=3 -2.4[-2.9|-3.0[-2.9 : L"j '
0.0l 0.0l 0.0] 0.0 o e policy -2.9(-3.0|-2.9|-2.4 ind I
0.0] 0.0] 0.0 0.0 Pl -3.0[-2.9]-2.4 0.0 LI - -
0.0[-1.0]-1.0-1.0 L 0.0[-6.1]-8.4|-9.0 - |q
k=1 -1.0]-1.0[-1.0|-1.0 bbb k=10 -6.1|-7.7[-8.4|-8.4 Tl 7 |1
- -1.0]-1.0[-1.0]-1.0 +| , -8.4|-8.4]-7.7]-6.1 L L Pl
-1.0l-1.0l-1.0| 0.0 — -9.01-8.4/-6.1] 0.0 - —
PN 14 120 1222 —
0.0[-1.7]-2.0]-2.0 o — | (1)40 14. :0. 22 - =
k=" -1.7]-2.0]-2.0-2.0 -+l k= oo -14.)-18.]-20.1-20. : L.‘j !
2.0{-2.0]-2.0]-1.7 Vbl o -20.|-20.|-18.|-14. |
L
-2.0[-2.0[-1.7] 0.0 i -22.]-20.)-14.] 0.0 i M

Note: Tﬁe vaﬁxe nction can 66 searcﬁeaf

ﬂreezﬁ@ to ﬁmf ong-term qm’ma[actions

27/01/2017 Reinforcement Learning

optimal
policy

20

Policy Improvement

Does it make sense to deviate from 5t(s) at any state (following the
policy everywhere else)?

Q"(s,a) = Yo Py [Rie +7V7(s)]

If mand 7" are any two deterministic policies such that Q™ (s, 7’(s)) = V™ (s) then
V™ (s) = V™(s)

If the inequality Q™ (s, 7'(s)) > V™ (s) is strict for any state, there must be at least

that many states for which V™' (s) > V7 (s)

- Q’o[icy Improvement Theorem [ﬂ-(owardYCBfacEwe[ﬂ

27/01/2017 Reinforcement Learning 21

Key Idea Behind Policy Improvement

V7(s) Q" (s, 7'(s))

Ew'{"'t.+1 + YV (8141) | St;s}

< Erfrin Q7 (81417 (5041)) | s1=15}

= Ep{ri +v7Ev{rie + YV (S142)} | st =5}

= En'{7‘t+1 + T2 + "1'2V7r(81.+2) | St =8}

< Eed{ren 72 + 7 res + 7V (sig8) | se=s}
< Evr'{rH—l + T2 + "z"27’t+3 + 7 Tega 4 | S¢ =3}

V™(s).

27/01/2017 Reinforcement Learning

Computing Better Policies

Starting with an arbitrary policy, we’d like to approach truly optimal
policies. So, we compute new policies using the following,

7'(s) = argmax Q" (s, a)
a
—_— 'd[‘g Inax E {-]‘(1 + Alr",,,.v-'rr(st 1 1) | .S[— a_(:(l}
a

— argmax E Pl ['Rf.s, -+ 71""'”(.9')]

s’

Are we restricted to deterministic policies? No.
With stochastic policies, Q7(s.7'(s)) =Y #(s.a)Q"(s.a)

a

27/01/2017 Reinforcement Learning 23

Policy Iteration

We can combine policy evaluation and improvement to obtain a
sequence of monotonically improving policies and value functions

[S™)

1 17 . 7T 1 i ‘7 T 1 1 L"' ‘ ‘r T

- I E
T — V™ — m — Ty — S

— Each policy is guaranteed to be a strict improvement over
previous one (unless it is already optimal)
[Policy Improvement Theorem]

— As a finite MDP admits finitely many policies, this eventually
converges to an optimal policy

27/01/2017 Reinforcement Learning

27/01/2017

Policy Iteration Algorithm

1. Initialise

e 1 — arbitrary deterministic policy
e VV = arbitrary value function
e = small positive number

2. Policy Evaluation

e For each state
. New V =3, P, [R?, +~V(s")] where a = 7(s)
e Repeat until no V' changes by more than 6

3. Policy Improvement

[Get b =T (.:)
o New 7 = arg max,), P[RS, +~V(s")]
e |f policy changed, i.e. new 7(s) ;é b for some s, goto 2

Reinforcement Learning

25

Example: Jack’s Car Rental

e £10 for each car rented (must be available when request received)
 Two locations, maximum of 20 cars at each

* Cars returned and requested randomly
— Poisson distribution, n returns/requests with probability %e"\
— Location 1: Average requests = 3, Average returns =3
— Location 2: Average requests = 4, Average Returns = 2

e Can move up to 5 cars between locations overnight (costs £2 each)
Problem setup:

e States, actions, rewards?
* Transition probabilities?

27/01/2017 Reinforcement Learning 26

Solution: Jack’s Car Rental

T

“Numbers indicate

_|--action: #cars to move

S
F

~

c

5]

§

pt

7]

=

-

T

»

@

&)

= [

2

o —

o #Cars at second location 2

27/01/2017 Reinforcement Learning 27

Points to Ponder: Jack’s Car Rental

* Suppose first car moved is free but all others transfers cost £2
— From Location 1 to Location 2 (not other direction!)
— Because an employee would anyway go in that direction, by bus

* Suppose only 10 cars can be parked for free at each location

— More than 10 incur fixed cost £4 for using an extra parking lot

... typical examples of ‘real-world nonlinearities’

27/01/2017 Reinforcement Learning 28

Value Iteration

Fach step in Policy Tteration needs Policy Evaluation (upto convergence)
- can we avoid this computational overhead?

Just update the values for one iteration and then improve the policy.
Update rule:

V— s [T “use Bellman equation
= max,) PR, + V()] as u}oc(aw rule

So we sweep through the state space once (and don't wait for V' to stop changing,
as in policy evaluation), then improve the policy, then repeat.

This update combines the one-iteration update of V' plus the policy improvement
(greedification wrt V') in one step.

27/01/2017 Reinforcement Learning 29

27/01/2017

Value Iteration Algorithm

1. Initialise

e V. m = arbitrary

2. Repeat

e For each state
°® Update V(S) = max, ZS, Psas’[RgS’ + ’“;V(S/)]
e Until no V' changes by more than some small amount

3. Policy is
° 7('(.5') = arg max, ZS, PSQS/ [R;LS/ + ’“,V(s’)]

Reinforcement Learning

30

Example: Gambler’s Problem

* Gambler can repeatedly bet on a coin flip
 Heads: wins stake; Tails: loses his money
* Initial capital € {S1, S2, ..., S99}

* Gambler has won if he reaches $100 and has lost if he goes
bankrupt (S0)

e Unfair coin: p(H) =0.4, p(T) =0.6

Problem formulation:
e States, Actions, Rewards?
e State transitions?

27/01/2017 Reinforcement Learning

31

Solution to Gambler’s Problem

0.8 -
Value 97 ﬁ g)
estimates) asea on SUccess1ve
047 sweeps of value iteration
0.2
O—IN - T T T 1
| 25 50 75 99
Capital
50 - : Wﬁy does it look
Final .. | - so strange?
policy
10
] a T T T T 1
1 25 50 75 99
Capital

27/01/2017 Reinforcement Learning 32

Generalized Policy Iteration

evaluation

m
T V

T—greedy(V)

improvement

27/01/2017

Caricature of the process:

starting
Vr

Builds on the notion of
interleaving evaluation and
improvement — but allows the
granularity to be flexible

Reinforcement Learning 33

Monte Carlo Methods

* Learn value functions
* Discover optimal policies
* Do not assume knowledge of model as in DP, i.e., P:.,, RS,

ss’

* Learn from experience: Sample sequences of states, actions
and rewards (s, a, r)
— In simulated or real (e.g., physical robotic) worlds

— Clearly, simulator is a model but not a full one as in a prob.
distribution

* Eventually attain optimal behaviour (same as with DP)

27/01/2017 Reinforcement Learning 34

Learning in MDPs

* You are learning from a long

stream of experience:
SoaoprosS1a171...SQETEk...

state

action

... Up to some terminal state

state

action

* Direct methods:
Approximate value function
(V/Q) straight away -

action without computing P2, RS,

ss’»

state

state

31/01/2017 Reinforcement Learning 35

27/01/2017

Pictorial: What does DP Do?

V(s) < E {1, +7 V(s,)}

Reinforcement Learning

36

Pictorial: What does Simple MC Do?

V(s,)< V(s) +a[R, - V(s,)]

where R is the actual return following state s, .

27/01/2017 Reinforcement Learning

37

Monte Carlo Policy Evaluation

e Goal: Approximate a value function V7 (s)

* Given: Some number of episodes under 7 which contain s

* Maintain average returns after visitstos .
— What is the effect of 77

(/ o) What 9"’ it is deterministic?
O—D—0——O
* First visit vs. Every visit MC:
— Consider a reward process R(t) =r; +vrie1 + ... and define the
first visit time, 7 = min{t|z = z;} and aset, 1 — [t|z = z;)
— First visit MC averages {R'(7)}.i=1,..,n
=1,...,nt; €l

whereas every visit MC averages over {R'(t;)}.i =

38

27/01/2017 Reinforcement Learning

First-visit Monte Carlo Policy Evaluation

Initialize:

m +— policy to be evaluated
V « an arbitrary state-value function
Returns(s) < an empty list, for all s € S

Repeat forever:
(a) Generate an episode using 7
(b) For each state s appearing in the episode:

R « return following the first occurrence of s
Append R to Returns(s)
V(s) < average(Returns(s))

27/01/2017

Reinforcement Learning

39

27/01/2017

Example

Goal: Achieve a card sum
greater than dealer without
exceeding 21

Player’s options: Hit (take

another card) or Stick (pass)
— If player crosses 21 - loss
Dealer follows simple rule:

Stick if 217, else Hit

Result:

Closest to 21 wins

Equally close is a draw

: Blackjack

10

PLAYER

DEALER

QUEEN

16

Reinforcement Learning

ACE=10R 11

Example: Blackjack

* Goal: Achieve a card sum greater than dealer without
exceeding 21

e State space: (200 states)

— Current sum (12 — 21)
— Dealer’s showing card (ace - 10)
— Do | have a usable ace (can be used as 11 without overshoot)?

e Reward: +1 for win, O for loss, -1 for a loss
e Action space: stick (no more cards), hit (receive another card)
* Policy: stick if sum is 20 or 21, else hit

Note: This is an (arbitrary) policy @ with which algorithm works

27/01/2017 Reinforcement Learning 41

Usable
ace

Wﬁy is this
“more choppy?

No
usable
ace

27/01/2017

Solution (V") : Blackjack

After 10,000 episodes After 500,000 episodes

Reinforcement Learning

42

Remarks on Blackjack Example

* Why does the value function jump up for the last two rows in
the rear?

— When sums correspond to 20 or 21, policy is to stick; this is a
good choice in this region of state space

* Why does it drop off for the whole last row on the left?

— Dealer is showing an ace, which gives him extra flexibility (two
chances to get close to 21)

 Why are the foremost values higher on upper plots than
lower plots?

— Player has usable ace (more flexibility)

27/01/2017 Reinforcement Learning 43

Backup in MC

Does the concept of backup diagram make sense for MC
methods?

As in figure, MC does not sample all transitions
— Root node to be updated as before
— Transitions are dictated by policy
— Acquire samples along a sample path
— Clear path from eventual reward to states
along the way (credit assignment easier)

Estimates are different states are independent I
terminal state

— Computational complexity not a function of state
dimensionality

Monte Carlo Estimation of Action Values

* Modelis not available, so we do not know how states and
actions interact

— We want O°

* We can try to approximate O%(s,a) using Monte Carlo method
— Asymptotic convergence if every state-action pair is visited

* Explore many different starting state-action pairs: Equal
chance of starting from any given state

— Not entirely practical, but simple to understand

27/01/2017 Reinforcement Learning 45

Monte Carlo Control

e Policy Evaluation:
Monte Carlo method
* Policy Improvement: Tt

Greedify with respect to
state-value of action-value

function

27/01/2017 Reinforcement Learning

evaluation

m

T—>greedy(Q)

iImprovement

Q

46

Convergence of MC Control

* Policy improvement still works if evaluation is done with MC:
Q™ (s, mr41(8)) = (ka(S,ﬂfgInguc('”k(s,a))
max Q" (s,0)

Q‘ﬂ‘k(sa ”Tk(s))
V7T (s).

v

* T, 27 by the policy improvement theorem

* Assumption: exploring starts and infinite number of episodes
for MC policy evaluation (i.e., value function has stabilized)

* Things to do (asin DP):
— update only to given tolerance
— interleave evaluation/improvement

27/01/2017 Reinforcement Learning 47

Monte Carlo Exploring Starts

Initialize, for all s € S, a € A(s): Fixed point is optimal
Q(s,a) « arbitrary policy 7
7(s) «— arbitrary
Returns(s,a) «— empty list

Repeat forever:
(a) Generate an episode using exploring starts and
(b) For each pair s,a appearing in the episode:
R « return following the first occurrence of s,
Append R to Returns(s,a)
Q(s,a) «— average(Relurns(s,a))
(¢) For each s in the episode:;
7(s) « argmax, Q(s,a)

27/01/2017 Reinforcement Learning 48

Blackjack Example — Optimal Policy

Exploring starts
Initial policy as described before

* ¢
1 V
]21 e
STICK] L7 FFF T
Usable L [. Y svesma el
Sa 1 + P ey :
17 LA Yy
ace 116 T
J 15 —1 -) pas & --.V__.'-. - .:/.
HIT] :g 4 </ Va /)
112 e
....... 1" .

121 ;
18 g ;
No STICK e 5 s AR
17 9 Z R S T
usable 118 & o Dty i
15 > Wl
ace HIT 114.8 L AN &
T30 D ' ~ T &
‘‘‘‘‘‘‘‘‘ fit ey W&
A2345678810 Moy &
Dealer showing 9 1gn

27/01/2017 Reinforcement Learning 49

