
Reinforcement	Learning	
	

Bandit	Problems,	Markov	Chains	and	Markov	
Decision	Processes		

Subramanian	Ramamoorthy	
School	of	Informa@cs	

	
20	January	2017	

What	is	Reinforcement	Learning(RL)?	

•  An	approach	to	Ar7ficial	Intelligence	
•  Learning	from	interac@on	
•  Learning	about,	from,	and	while	interac7ng	(trial	and	error)	

with	an	external	environment	
•  Goal-oriented	learning;	implying	delayed	rewards	

•  Learning	what	to	do—how	to	map	situa7ons	to	ac7ons—so	as	
to	maximize	a	numerical	reward	signal	

•  Can	be	thought	of	as	a	stochas7c	op7miza7on	over	7me	

2	20/01/17	 Reinforcement	Learning	

Setup	for	RL	
Agent	(algorithm)	is:	
•  Temporally	situated	
•  Con7nual	learning	and	planning	
•  Objec7ve	is	to	affect	the	environment	–	ac7ons	and	states	
•  Environment	is	uncertain,	stochas7c	

Environment

Agent
3	20/01/17	 Reinforcement	Learning	

Mul7-arm	Bandits	(MAB)	

•  N	possible	ac7ons	
•  You	can	play	for	some	period	

of	7me	and	you	want	to	
maximize	reward	(expected	
u7lity)	

Which is the best arm/

machine?

DEMO	

	 4	20/01/17	 Reinforcement	Learning	

Numerous	Applica7ons!	

20/01/17	 5	Reinforcement	Learning	

What	is	the	Choice?	

6	20/01/17	 Reinforcement	Learning	

n-Armed	Bandit	Problem	

•  Choose	repeatedly	from	one	of	n	ac7ons;	each	choice	is	
called	a	play	

•  A_er	each	play	at ,	you	get	a	reward	rt	,	where	

These are unknown action values
Distribution of depends only on 		rt at

Objective is to maximize the reward in the long term, e.g., over 1000 plays

To solve the n-armed bandit problem,
 you must explore a variety of actions
 and exploit the best of them

7	20/01/17	 Reinforcement	Learning	

Explora7on/Exploita7on	Dilemma	

•  Suppose	you	form	es7mates	

•  The	greedy	ac7on	at	7me	t		is	at
*	

•  You	can’t	exploit	all	the	7me;	you	can’t	explore	all	the	7me	
•  You	can	never	stop	exploring;	but	you	could	reduce	

exploring.		

Qt(a) ≈Q
*(a) action value estimates	

at
* = argmax

a
Qt (a)

at = at
* ⇒ exploitation

at ≠ at
* ⇒ exploration

8	20/01/17	

Why?	

Reinforcement	Learning	

Ac7on-Value	Methods	

•  Methods	that	adapt	ac7on-value	es7mates	and	nothing	else,	
e.g.:		suppose	by	the	t-th	play,	ac7on	a	had	been	chosen	ka	
7mes,	producing	rewards	r1 , r2 , …, rka

 , then		

“sample average”

lim
ka→∞

Qt (a) =Q
*(a)

9	20/01/17	 Reinforcement	Learning	

What	is	the	behaviour		
with	finite	samples?	

ε-Greedy	Ac7on	Selec7on	

•  Greedy	ac7on	selec7on:	

•  ε-Greedy:	

at = at
* = argmax

a
Qt (a)

at
* with probability 1−ε

random action with probability ε{at =

. . . the simplest way to balance exploration and exploitation

10	20/01/17	 Reinforcement	Learning	

20/01/17	 Reinforcement	Learning	 11	

Worked	Example:	10-Armed	Testbed	

•  n = 10 possible actions

•  Each is chosen randomly from a normal distrib.:

•  Each is also normal:

•  1000 plays, repeat the whole thing 2000 times and average
the results

rt

Q*(a))1,0(N

N(Q*(at),1)

12	20/01/17	 Reinforcement	Learning	

10-Armed	Testbed	Rewards	

1 2 63 54 7 8 9 10

0

1

2

3

-3

-2

-1

q⇤(1)

q⇤(2)

q⇤(3)

q⇤(4)

q⇤(5)

q⇤(6)

q⇤(7)

q⇤(8)

q⇤(9)

q⇤(10)
Reward

distribution

Action

-4

4

20/01/17	 Reinforcement	Learning	 13	

ε-Greedy	Methods	on	the	10-Armed	Testbed	

14	20/01/17	 Reinforcement	Learning	

Incremental	Implementa7on	

Qk =
r1 + r2 +!rk

k

Sample	average	es7ma7on	method:	

How	to	do	this	incrementally	(without	storing	all	the	rewards)?		

We	could	keep	a	running	sum	and	count,	or,	equivalently:	

Qk+1 =Qk +
1
k +1

rk+1 −Qk[]

The	average	of	the	first	k	rewards	is	
(dropping	the	dependence	on	a):	

	
NewEs5mate	=	OldEs5mate	+	StepSize	[Target	–	OldEs5mate]	

15	20/01/17	 Reinforcement	Learning	

Tracking	a	Non-sta7onary	Problem	

Choosing							to	be	a	sample	average	is	appropriate	in	a	
sta7onary	problem,		
											i.e.,	when	none	of	the													change	over	7me,	
	
But	not	in	a	nonsta7onary	problem.	

Qk

Q*(a)

The	beler	op7on	in	the	nonsta7onary	case	is:	

Qk+1 = Qk +α rk+1 −Qk[]
for constant α, 0 <α ≤ 1

 = (1− α)kQ0 + α (1−α
i=1

k

∑)k −i ri

exponen5al,	recency-weighted	average	

16	20/01/17	 Reinforcement	Learning	

Op7mis7c	Ini7al	Values	

•  All	methods	so	far	depend	on										,	i.e.,	they	are	biased	
•  Encourage	explora7on:	ini7alize	the	ac7on	values	op7mis7cally,	

Q0 (a)

i.e.,	on	the	10-armed	testbed,	use		Q0 (a) = 5 for all a

17	20/01/17	 Reinforcement	Learning	

So_max	Ac7on	Selec7on	

•  So_max	ac7on	selec7on	methods	grade	ac7on	probabili7es	
by	es7mated	values.	

•  The	most	common	so_max	uses	a	Gibbs,	or	Boltzmann,	
distribu7on:	

Choose action a on play t with probability

 eQt (a) τ

eQt (b) τ

b=1

n
∑

,

where τ is a 'computational temperature'

18	20/01/17	 Reinforcement	Learning	

Another	Interpreta7on	of	MAB	Problems	

20/01/17	 19	

Related	to	
‘rewards’	

Reinforcement	Learning	

MAB	is	a	Special	Case	of	Online	Learning	

20/01/17	 20	Reinforcement	Learning	

How	to	Evaluate	Online	Alg.:	Regret	

•  A_er	you	have	played	for	T	rounds,	you	experience	a	regret:	
=	[Reward	sum	of	op7mal	strategy]	–	[Sum	of	actual	collected	rewards]	

	
•  If	the	average	regret	per	round	goes	to	zero	with	probability	

1,	asympto7cally,	we	say	the	strategy	has	no-regret	property	
	 	~	guaranteed	to	converge	to	an	op7mal	strategy		

•  ε-greedy	is	sub-op7mal	(so	has	some	regret).	Why?	

20/01/17	 21	

[]

kk

T

t
i

T

t
t trETrT

t

µµ

µµρ

max

)(ˆ

*
1

*

1

*

=

−=−= ∑∑
== Randomness	in	

draw	of	rewards	&	
Player’s	strategy	

Reinforcement	Learning	

Interval	Es7ma7on	

•  Alribute	to	each	arm	an	“op7mis7c	ini7al	es7mate”	within	a	
certain	confidence	interval	

•  Greedily	choose	arm	with	highest	op7mis7c	mean	(upper	
bound	on	confidence	interval)	

•  Infrequently	observed	arm	will	have	over-valued	reward	
mean,	leading	to	explora7on	

•  Frequent	usage	pushes	op7mis7c	es7mate	to	true	values	

20/01/17	 22	Reinforcement	Learning	

Interval	Es7ma7on	Procedure	

•  Associate	to	each	arm	100(1-α)%	reward	mean	upper	band	

•  Assume,	e.g.,	rewards	are	normally	distributed	
•  Arm	is	observed	n	7mes	to	yield	empirical	mean	&	std	dev	
•  α-upper	bound:	

	
•  If	α	is	carefully	controlled,	could	be	made	zero-regret	strategy	

–  In	general	(i.e.,	for	other	distribu7ons),	we	don’t	know	

20/01/17	 23	

dxxtc

c
n

u

t

∫ ∞−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−+=

2
exp

2
1)(

)1(
ˆˆ

2

1

π

α
σ

µα

Cum.	Distribu7on	Func7on	

Reinforcement	Learning	

Reminder:	Chernoff-Hoeffding	Bound		

20/01/17	 24	Reinforcement	Learning	

Variant:	UCB	Strategy	

•  Again,	based	on	no7on	of	an	upper	confidence	bound	but	
more	generally	applicable	

•  Algorithm:	
–  Play	each	arm	once	
–  At	7me	t > K,	play	arm	it	maximizing	

20/01/17	 25	

far so playedbeen has j timesofnumber :

ln2)(

,

,

tj

tj
j

T

T
ttr +

Reinforcement	Learning	

UCB	Strategy	

20/01/17	 26	Reinforcement	Learning	

UCB	Strategy	–	Behaviour	

20/01/17	 27	

	We	will	not	prove	the	following	result,	but	I	quote	the	
theorem	to	explain	the	benefit	of	UCB	–	regret	is	bounded.	

K	=	number	of	arms	

Reinforcement	Learning	

Empirical	Behaviour:	UCB	

1

!-greedy ! = 0.1

UCB c = 2

Average
reward

Steps

20/01/17	 Reinforcement	Learning	 28	

Varia7on	on	So_Max:	

•  It	is	possible	to	drive	regret	down	by	annealing	τ	
•  Exp3	:	Exponen7al	weight	alg.	for	explora7on	and	exploita7on	
•  Probability	of	choosing	arm	k	at	7me	t	is	
	

20/01/17	 29	

∑ =

n

b
bQ

aQ

t

t

e
e

1
)(

)(

τ

τ

())log(Regret

at pulled is arm if

)(
)(
)(

exp)()1(

)(

)()1()(

1

KKTO

otherwise
tj

tw
KtP
tr

twtw

Ktw

twtP

j

j

j
j

j

k

j
j

k
k

≈

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=+

+−=

∑
=

γ

γ
γ

γ	is	a	user	defined	
open	parameter	

Reinforcement	Learning	

The	Giuns	Index	

•  Each	arm	delivers	reward	with	a	probability	
•  This	probability	may	change	through	7me	but	only	when	arm	

is	pulled	
•  Goal	is	to	maximize	discounted	rewards	–	future	is	discounted	

by	an	exponen7al	discount	factor	δ < 1

•  The	structure	of	the	problem	is	such	that,	all	you	need	to	do	is	
compute	an	“index”	for	each	arm	and	play	the	one	with	the	
highest	index	

•  Index	is	of	the	form:	

20/01/17	 30	

ν i = sup
T>0

δ tRi (t)
t=0

T

∑

δ t

t=0

T

∑
Reinforcement	Learning	

Giuns	Index	–	Intui7on	

•  We	will	not	give	a	proof	of	its	op7mality	now,	and	will	return	
to	that	issue	later	in	the	course.	

•  Analysis	is	based	on	stopping	7me:	the	point	where	you	
should	‘terminate’	a	bandit	arm	

•  Nice	Property:	Giuns	index	for	any	given	bandit	is	
independent	of	expected	outcome	of	all	other	bandits	
–  Once	you	have	a	good	arm,	keep	playing	un7l	there	is	a	beler	one	
–  If	you	add/remove	machines,	computa7on	doesn’t	really	change	

BUT:		
–  hard	to	compute,	even	when	you	know	the	distribu7ons	
–  Explora7on	issues;	arms	aren’t	updated	unless	used	(restless	bandits?)	

20/01/17	 31	Reinforcement	Learning	

What	About	State	Changes?	

•  In	MAB,	we	were	in	a	single	casino	and	the	only	decision	is	to	
pull	from	a	set	of	n	arms	
–  Some	change,	perhaps,	if	an	adversary	were	introduced…	

	
Next,	
•  What	if	there	is	more	than	one	state?	
•  So,	in	this	state	space,	what	is	the	effect	of	the	distribu7on	of	

payout	changing	based	on	how	you	pull	arms?		
•  What	happens	if	you	only	obtain	a	net	reward	corresponding	

to	a	long	sequence	of	arm	pulls	(at	the	end)?	

20/01/17	 32	Reinforcement	Learning	

Decision	Making	Agent-Environment	Interface	

Agent and environment interact at discrete time steps: t = 0, 1, 2,…
 Agent observes state at step t: st ∈ S
 produces action at step t : at ∈ A(st)
 gets resulting reward: rt+1 ∈ℜ

 and resulting next state: st+1

t
. . . s t a

r t +1 s t +1
t +1 a

r t +2 s t +2
t +2 a

r t +3 s t +3 . . .
t +3 a

20/01/17	 33	Reinforcement	Learning	

Markov	Decision	Processes	

•  A	model	of	the	agent-environment	system	
•  Markov	property	=	history	doesn’t	maler,	only	current	state	
•  If	state	and	ac7on	sets	are	finite,	it	is	a	finite	MDP.		
•  To	define	a	finite	MDP,	you	need	to	give:	

–  state	and	ac@on	sets	
–  one-step	“dynamics”	defined	by	transi@on	probabili@es:	

–  reward	probabili@es:	

Ps ʹs
a = Pr st+1 = ʹs st = s,at = a{ } for all s, ʹs ∈ S, a ∈ A(s).

Rs ʹs
a = E rt+1 st = s,at = a, st+1 = ʹs{ } for all s, ʹs ∈ S, a ∈ A(s).

20/01/17	 34	Reinforcement	Learning	

Recycling Robot

An	Example	Finite	MDP	

•  At	each	step,	robot	has	to	decide	whether	it	should	(1)	ac7vely	
search	for	a	can,	(2)	wait	for	someone	to	bring	it	a	can,	or	(3)	go	to	
home	base	and	recharge.		

•  Searching	is	beler	but	runs	down	the	balery;	if	it	runs	out	of	
power	while	searching	then	it	has	to	be	rescued	(which	is	bad).	

•  Decisions	made	on	the	basis	of	current	energy	level:	high,	low.	

•  Reward	=	number	of	cans	collected	

20/01/17	 35	Reinforcement	Learning	

Recycling	Robot	MDP	

20/01/17	 36	Reinforcement	Learning	

Rewards while searching/waiting :

rsearch > rwait

Enumerated	In	Tabular	Form	

20/01/17	 37	

If you were given this much, what can you say about
the behaviour (over time) of the system?

Reinforcement	Learning	

Very	Brief	Primer	on		
Markov	Chains	

20/01/17	 38	Reinforcement	Learning	

Stochas7c	Processes	

•  A	stochas5c	process	is	an	indexed	collec7on	of	random	
variables					.	
–  e.g.,	collec7on	of	weekly	demands	for	a	product	

•  One	type:	At	a	par7cular	7me	t,	labelled	by	integers,	system	is	
found	in	exactly	one	of	a	finite	number	of	mutually	exclusive	
and	exhaus7ve	categories	or	states,	labelled	by	integers	too	

•  Process	could	be	embedded	in	that	7me	points	correspond	to	
occurrence	of	specific	events	(or	7me	may	be	equi-spaced)	

•  Random	variables	may	depend	on	others,	e.g.,	

20/01/17	 39	Reinforcement	Learning	

Markov	Chains	

•  The	stochas7c	process	is	said	to	have	a	Markovian	property	if	

•  Markovian	property	means	that	the	condi5onal	probability	of	
a	future	event	given	any	past	events	and	current	state,	is	
independent	of	past	states	and	depends	only	on	present	

•  The	condi7onal	probabili7es	are	transi@on	probabili@es,	

•  These	are	sta7onary	if	7me	invariant,	denote	pij,	

20/01/17	 40	Reinforcement	Learning	

Markov	Chains	

•  Looking	forward	in	7me,	n-step	transi@on	probabili@es,	pij
(n)

•  One	can	write	a	transi7on	matrix,	

•  A	stochas7c	process	is	a	finite-state	Markov	chain	if	it	has,	
–  Finite	number	of	states	
–  Markovian	property	
–  Sta7onary	transi7on	probabili7es	
–  A	set	of	ini7al	probabili7es P{X0 = i} for	all	i

20/01/17	 41	Reinforcement	Learning	

Markov	Chains	

•  n-step	transi7on	probabili7es	can	be	obtained	from	1-step	
transi7on	probabili7es	recursively	(Chapman-Kolmogorov)	

	
•  We	can	get	this	via	the	matrix	too	
	
•  First	Passage	Time:	number	of	transi7ons	to	go	from	i to	j	for	

the	first	7me	
–  If	i =	j, this	is	the	recurrence	@me	
–  In	general,	this	itself	is	a	random	variable	

20/01/17	 42	Reinforcement	Learning	

Markov	Chains	

•  n-step	recursive	rela7onship	for	first	passage	7me	

•  For	fixed	i	and	j,	these	fij
(n)	are	nonnega7ve	numbers	so	that	

•  If																							,state	is	recurrent;	if	so	for	n=1	then	state	i	is
	 	 	 	 	 	 		absorbing	

	20/01/17	 43	

What does <1 signify?

Reinforcement	Learning	

Markov	Chains:	Long-Run	Proper7es	

20/01/17	 44	

•  Consider	this	transi7on	matrix	of	an	inventory	process:	

•  This	captures	the	evolu7on	of	inventory	levels	in	a	store	
– What	do	the	0	values	mean?	
–  Other	proper7es	of	this	matrix?	

Reinforcement	Learning	

Markov	Chains:	Long-Run	Proper7es	

		The	corresponding	8-step	transi7on	matrix	becomes:	
	
	
	
	Interes7ng	property:	probability	of	being	in	state	j	a_er	8	
weeks	appears	independent	of	ini5al	level	of	inventory.	

•  For	an	irreducible	ergodic	Markov	chain,	one	has	limi7ng	
probability	

Reciprocal gives you
recurrence time

20/01/17	 45	Reinforcement	Learning	

Markov	Decision	Model	

•  Consider	the	following	applica7on:	machine	maintenance	
•  A	factory	has	a	machine	that	deteriorates	rapidly	in	quality	

and	output	and	is	inspected	periodically,	e.g.,	daily	
•  Inspec7on	declares	the	machine	to	be	in	four	possible	states:	

–  0:	Good	as	new	
–  1:	Operable,	minor	deteriora7on	
–  2:	Operable,	major	deteriora7on	
–  3:	Inoperable	

•  Let	Xt	denote	this	observed	state	
–  evolves	according	to	some	“law	of	mo7on”,	it	is	a	stochas7c	process	
–  Furthermore,	assume	it	is	a	finite	state	Markov	chain	

	
20/01/17	 46	Reinforcement	Learning	

Markov	Decision	Model	

•  Transi7on	matrix	is	based	on	the	following:	

•  Once	the	machine	goes	inoperable,	it	stays	there	un7l	repairs	
–  If	no	repairs,	eventually,	it	reaches	this	state	which	is	absorbing!	

•  Repair	is	an	ac@on	–	a	very	simple	maintenance	policy.	
–  e.g.,	machine	from	from	state	3	to	state	0	

20/01/17	 47	Reinforcement	Learning	

Markov	Decision	Model	

•  There	are	costs	as	system	evolves:	
–  State	0:	cost	0	
–  State	1:	cost	1000	
–  State	2:	cost	3000	

•  Replacement	cost,	taking	state	3	to	0,	is	4000	(and	lost	
produc7on	of	2000),	so	cost	=	6000	

•  The	modified	transi7on	probabili7es	are:	

20/01/17	 48	Reinforcement	Learning	

Markov	Decision	Model	

•  Simple	ques7on	(a	behavioural	property):		
	What	is	the	average	cost	of	this	maintenance	policy?	

•  Compute	the	steady	state	probabili7es:	

	

•  (Long	run)	expected	average	cost	per	day,	

20/01/17	 49	

How?

Reinforcement	Learning	

Markov	Decision	Model	

•  Consider	a	slightly	more	elaborate	policy:	
–  Replace	when	inoperable	but	if	only	needing	major	repairs,	overhaul	

•  Transi7on	matrix	now	changes	a	lille	bit	
•  Permit	one	more	thing:	overhaul	

–  Go	back	to	minor	repairs	state	(1)	for	the	next	7me	step	
–  Not	possible	if	truly	inoperable,	but	can	go	from	major	to	minor	

•  Key	point	about	the	system	behaviour.	It	evolves	according	to	
–  “Laws	of	mo7on”	
–  Sequence	of	decisions	made	(ac7ons	from	{1:	none,2:overhaul,3:	replace})	

•  Stochas7c	process	is	now	defined	in	terms	of	{Xt}	and	{Δt}
–  Policy,	R,	is	a	rule	for	making	decisions	

•  Could	use	all	history,	although	popular	choice	is	(current)	state-based	

20/01/17	 50	Reinforcement	Learning	

Markov	Decision	Model	

•  There	is	a	space	of	poten7al	policies,	e.g.,	

•  Each	policy	defines	a	transi7on	matrix,	e.g.,	for	Rb

Which policy is best?
Need costs….

20/01/17	 51	

0 0

Reinforcement	Learning	

Markov	Decision	Model	

•  Cik	=	expected	cost	incurred	during	next	transi7on	if	system	is	
in	state	i	and	decision	k	is	made	

•  The	long	run	average	expected	cost	for	each	policy	may	be	
computed	using,	

State	 Dec.	 1	 2	 3	

0	 0	 4	 6	

1	 1	 4	 6	

2	 3	 4	 6	

3	 ∞	 ∞	 6	

Rb is best:
Work out details at home.

20/01/17	 52	Reinforcement	Learning	

So,	What	is	a	Policy?	

•  A	“program”	
•  Map	from	states	(or	situa7ons	in	the	decision	problem)	to	

ac7ons	that	could	be	taken	
–  e.g.,	if	in	‘level	2’	state,	call	contractor	for	overhaul	
–  If	less	than	3	DVDs	of	a	film,	place	an	order	for	2	more	

•  A	probability	distribu7on	π(x,a)	
–  A	joint	probability	distribu7on	over	states	and	ac7ons	
–  If	in	a	state	x1,	then	with	probability	defined	by	π,	take	
ac7on	a1

20/01/17	 53	Reinforcement	Learning	

Markov	Decision	Processes	

20/01/17	 54	

•  ‘Sta7c’	view:	

•  Example:	

	
	

Notation:
State ó s/x

Reinforcement	Learning	

MDPs	as	Bayesian	Networks	

20/01/17	 55	Reinforcement	Learning	

A	Decision	Criterion	

•  The	general	approach,	that	computa7onally	implements	the	
previous	calcula7ons	with	simultaneous	equa7ons	over	
probabili7es	is	linear	programming	

•  Another	approach	to	dealing	with	MDPs	is	via	‘learning’	
–  O_en,	trea7ng	the	discounted,	episodic	seung	

•  What	is	the	criterion	for	adapta7on	(i.e.,	learning)?	

20/01/17	 56	

 Rt = rt+1 +γ rt+2 +γ
2rt+3 +!= γ krt+k+1,

k=0

∞

∑

where γ, 0 ≤ γ ≤1, is the discount rate.
Effect of changing γ?

Reinforcement	Learning	

Episodic	vs.	Infinite:	A	Unified	Nota7on	

•  In	(discrete)	episodic	tasks,	we	could	number	the	7me	
steps	of	each	episode	star7ng	from	zero.	

•  We	usually	do	not	have	to	dis7nguish	between	episodes,	
so	we	write							instead	of										for	the	state	at	step	t	of	
episode	j.	

•  Think	of	each	episode	as	ending	in	an	absorbing	state	that	
always	produces	reward	of	zero:	

•  We	can	cover	all	cases	by	wri7ng	

st st, j

 Rt = γ krt+k+1,
k=0

∞

∑

where γ can be 1 only if a zero reward absorbing state is always reached.

20/01/17	 57	Reinforcement	Learning	

Acknowledgements	

•  The	Markov	Chains	and	MDP	formula7on	slides	are	adapted	
from	chapters	in	F.S.	Hillier	&	G.J.	Lieberman,	Opera7ons	
Research,	2nd	ed.	

•  Ini7al	slides	on	MAB	and	some	later	slides	on	reinforcement	
learning	formula7on	are	adapted	from	web	resources	
associated	with	Sulon	and	Barto’s	book.	

20/01/17	 58	Reinforcement	Learning	

