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What is Reinforcement Learning(RL)?

* An approach to Artificial Intelligence
* Learning from interaction

e Learning about, from, and while interacting (trial and error)
with an external environment

* Goal-oriented learning; implying delayed rewards

* Learning what to do—how to map situations to actions—so as
to maximize a numerical reward signal

* Can be thought of as a stochastic optimization over time
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Setup for RL

Agent (algorithm) is:

® Temporally situated

® Continual learning and planning

® Objective is to affect the environment — actions and states
® Environment is uncertain, stochastic

Agent
. State, Reward, Action,
SFImU_lUS» Gain, Payoff, Response,
Situation Cost Control
Environment |<

(world)
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Multi-arm Bandits (MAB)

* N possible actions

* You can play for some period
of time and you want to
maximize reward (expected
utility)

Which is the best arm/
machine?

DEMO
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Numerous Applications!

Computer Go Brain computer interface Medical trials

A

Packets routing Ads placement Dynamic allocation
m— ‘ »
- - N \

O < |
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What is the Choice?
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n-Armed Bandit Problem

* Choose repeatedly from one of n actions; each choice is
called a play

* After each play a,, you get a reward r,, where

E{rla} =0 ()

These are unknown action values
Distribution of I/} depends only on at

Objective is to maximize the reward in the long term, e.qg., over 1000 plays

To solve the n-armed bandit problem,
you must explore a variety of actions
and exploit the best of them
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Why?

Exploration/Exploitation Dilemma

Suppose you form estimates

Q(a)= Q*(a) action value estimates

The greedy action at time ¢ is a,”
a, =argmaxQ,(a)

a, = a, = exploitation

™% T %

a, = a, = exploration

You can’t exploit all the time; you can’t explore all the time

You can never stop exploring; but you could reduce
exploring.
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Action-Value Methods

* Methods that adapt action-value estimates and nothing else,
e.g.: suppose by the #-th play, action a had been chosen k,
times, producing rewardsr;, 75, ..., 1;_, then

it g,
— ‘

“sample average”

O:(a)

with finite samples?

]}1230 Qt (a) = Q>X< (a) What is the behaviour
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e-Greedy Action Selection

* Greedy action selection:

a, = a, =argmax Q,(a)

* ¢-Greedy:

4

4 = { a, with probability 1-¢

random action with probability &

... the simplest way to balance exploration and exploitation
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A simple bandit algorithm

Initialize, for a = 1 to k:

Qa) <0
N(a) <0

Repeat forever:
A | argmax, Q(a) with probability 1 — ¢  (breaking ties randomly)
a random action with probability &
R <+ bandit(A)
N(A)« N(A) +1
Q(A) « Q(A) + i [R - Q(A)]
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Worked Example: 10-Armed Testbed

n = 10 possible actions
Each Q'(a) is chosen randomly from a normal distrib.: N(0,1)
Each Zisalso normal: N(Q'(a,),1)

1000 plays, repeat the whole thing 2000 times and average
the results
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Reward
distribution
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10-Armed Testbed Rewards

—

1
—

Reinforcement Learning

Run for 1000 steps

Repeat the whole
thing 2000 times
with different bandit
tasks
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e-Greedy Methods on the 10-Armed Testbed

1.5

€=0.1
€ =0.01
1 ALERLE Amﬂ'ﬁm
€ =0 (greedy)
Average
reward
0.5
0 I I I I
0 250 500 750 1000
Plays
100% =
80% — — e g Il
%o 0% € =001
Optimal :

action 407 - //

€ =0 (greedy)

20% -

0% = T T T 1
0 250 500 750 1000
Plays
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Incremental Implementation

Sample average estimation method:

The average of the first k rewards is KA1, +-ooT,
(dropping the dependence on a ): k= A

How to do this incrementally (without storing all the rewards)?

We could keep a running sum and count, or, equivalently:
1
Qi =0, +m[rk+l _Qk]

NewéEstimate = OldEstimate + StepSize [Target — OldEstimate]

20/01/17 Reinforcement Learning
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Tracking a Non-stationary Problem

Choosing (J, to be a sample average is appropriate in a
stationary problem,
i.e., when none of the O (a) change over time,

But not in a nonstationary problem.

The better option in the nonstationary case is:

Ok+1 = Ok + o [rx+1 — Ok

for constant a, 0 < a <1

k
= (1— oc)kQO + E ol — oc)k_iri
=1

exponential, recency-weighted average
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Optimistic Initial Values

» All methods so far depend onQ,(a), i.e., they are biased
* Encourage exploration: initialize the action values optimistically,

i.e., on the 10-armed testbed, use QJ,(a) =5 foralla

100% -
optimistic, greedy
80% - Qp=35,€=0
A 60% realistic, €-greedy
Optimal 0,=0, €=0.1

action  40% -

20% -

0% =7 T T T T 1
0 200 400 600 800 1000

Plays
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Softmax Action Selection

* Softmax action selection methods grade action probabilities
by estimated values.

* The most common softmax uses a Gibbs, or Boltzmann,
distribution:

Choose action a on play ¢ with probability
0 (a)/T
e

b=1

where 7 1s a 'computational temperature'
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Another Interpretation of MAB Problems

% Related to
‘rewards’

Player

20/01/17 Reinforcement Learning 19



MAB is a Special Case of Online Learning

g VA
-~ \\ |
‘, /

Feedback: (1
li.....ld ¥ 1- CNN 2 NBC d: ABC

Player
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How to Evaluate Online Alg.: Regret

e After you have played for T rounds, you experience a regret:
= [Reward sum of optimal strategy] — [Sum of actual collected rewards]

T T
p=Tu —En =Tu —EE[rit(t)]
=1 =1 Randomness in
* draw of rewards &
M =max, W, Player’s strategy

* If the average regret per round goes to zero with probability
1, asymptotically, we say the strategy has no-regret property

~ guaranteed to converge to an optimal strategy
* ¢-greedy is sub-optimal (so has some regret). Why?
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Interval Estimation

Attribute to each arm an “optimistic initial estimate” within a
certain confidence interval

Greedily choose arm with highest optimistic mean (upper
bound on confidence interval)

Infrequently observed arm will have over-valued reward
mean, leading to exploration

Frequent usage pushes optimistic estimate to true values



Interval Estimation Procedure

Associate to each arm 100(1-a)% reward mean upper band

Assume, e.g., rewards are normally distributed
Arm is observed n times to yield empirical mean & std dev

Za

a-upper bound: " ﬂ+ic‘1(l—a)
2

Jn

xd)
exp| —— |dx Cum. Distribution Function
27 I ( 2 )

If o is carefully controlled, could be made zero-regret strategy

c(t) =

— In general (i.e., for other distributions), we don’t know
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Reminder: Chernoff-Hoeffding Bound

Let Xi. X, ..., Xn be independent random variables in the range

[0, 1] with E[X]] = . Then for a > 0,

1 d —2a°n
P(nZX/Zqua) <e

=1

20/01/17 Reinforcement Learning
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Variant: UCB Strategy

* Again, based on notion of an upper confidence bound but
more generally applicable

e Algorithm:
— Play each arm once
— At time ¢ > K, play arm i, maximizing

_ 21nt
rj(t)+ T—

Jot

T, , :number of times j has been played so far

20/01/17 Reinforcement Learning
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UCB Strategy

Intuition:
The second term /21Int/T; ; is the the size of the one-sided

(1 — 1/t)-condifence interval for the average reward (using
Chernoff-Hoeffding bounds).

- —
_ =
/! N

true expected reward upper confidence bound
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UCB Strategy — Behaviour

We will not prove the following result, but | quote the
theorem to explain the benefit of UCB —regret is bounded.

Theorem

(Auer, Cesa-Bianchi, Fisher) At time T, the regret of the UCB policy is

at most
8K

A+ In T + 5K, K = number of arms
where A* = p* — maxi.;,; <.+ ti (the gap between the best expected
reward and the expected reward of the runner up).
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Empirical Behaviour: UCB

°l UCWWWWWWMWW“

E-greedy € =0.1

Average
reward

05F

1 250 500 750 1000

Steps
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eQz (a)/‘l,’

Variation on SoftMax: S o

b=1

* Itis possible to drive regret down by annealing t
* Exp3: Exponential weight alg. for exploration and exploitation
* Probability of choosing arm k at time ¢ is

v is a user defined
P@)=(1-y) kwk ®) + 4 open parameter
» wi(t)
=
() 50 ) ifarm jispulledat ¢
w.(t)exp| ¥
W. t+1 =3 J .
e+l Fk otherwise
W
(
Regret ~ O\ KT 1og(1<))
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The Gittins Index

Each arm delivers reward with a probability

This probability may change through time but only when arm
is pulled

Goal is to maximize discounted rewards — future is discounted
by an exponential discount factor o < 1

The structure of the problem is such that, all you need to do is
compute an “index” for each arm and play the one with the
highest index

Index is of the form: <§5IRZ'(;)>




Gittins Index — Intuition

 We will not give a proof of its optimality now, and will return
to that issue later in the course.

* Analysis is based on stopping time: the point where you
should ‘terminate’ a bandit arm

* Nice Property: Gittins index for any given bandit is
independent of expected outcome of all other bandits
— Once you have a good arm, keep playing until there is a better one
— If you add/remove machines, computation doesn’t really change

BUT:

— hard to compute, even when you know the distributions
— Exploration issues; arms aren’t updated unless used (restless bandits?)



What About State Changes?

In MAB, we were in a single casino and the only decision is to
pull from a set of n arms

— Some change, perhaps, if an adversary were introduced...

Next,

What if there is more than one state?

So, in this state space, what is the effect of the distribution of
payout changing based on how you pull arms?

What happens if you only obtain a net reward corresponding
to a long sequence of arm pulls (at the end)?



Decision Making Agent-Environment Interface

:' Agent I
state reward action

Sr Rr A,
R (
Environment ]<

%)

i 141
:4

\

Agent and environment interact at discrete time steps: t=0,1,2,...
Agent observes state at stept: s, €S
produces action at step : a, € A(s,)
gets resulting reward: r_ ENR

and resulting next state: s,

@at 'ereh Hzm rHBQem
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Markov Decision Processes

A model of the agent-environment system
Markov property = history doesn’t matter, only current state
If state and action sets are finite, it is a finite MDP.
To define a finite MDP, you need to give:
— state and action sets
— one-step “dynamics” defined by transition probabilities:

P = Plr{st+1 = S’| S, =S8,a, = a} for all 5,5' € S, a € A(s).

— reward probabilities:

R = E{rt+1 s, =$,a,=a,s,,, = S'} for all 5,5' € S, a € A(s).



An Example Finite MDP
Recycling Robot

e At each step, robot has to decide whether it should (1) actively
search for a can, (2) wait for someone to bring it a can, or (3) go to
home base and recharge.

e Searching is better but runs down the battery; if it runs out of
power while searching then it has to be rescued (which is bad).

* Decisions made on the basis of current energy level: high, low.

e Reward = number of cans collected



Recycling Robot MDP

A(high) = {search,wait}

A(low) = {search,wait, recharge}.

Rewards while searching/waiting :

Tsearch = Twait

[3 , 'search
search

1,0 recharge

search

L, T'vait
(0 r 7jsearch l_a L] 7 search
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Enumerated In Tabular Form

s s’ a p(s’|s,a) | r(s,a,s’)
high high search Qo I'search
high low search 1l —« I'search
low high search 1-7 —3
low low search 15 I'search
high high wait 1 Twait
high 1low wait 0 Taait
low high wait 0 T'wait
low low wait 1 Twait
low  high recharge | 1 0

low low  recharge | 0 0.

If you were given this much, what can you say about

~the behaviour (over time) of the system?

Reinforcement Learning
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Very Brief Primer on
Markov Chains

Reinforcement Learning
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Stochastic Processes

A stochastic process is an indexed collection of random
variables {X;}

— e.g., collection of weekly demands for a product
One type: At a particular time ¢, labelled by integers, system is

found in exactly one of a finite number of mutually exclusive
and exhaustive categories or states, labelled by integers too

Process could be embedded in that time points correspond to
occurrence of specific events (or time may be equi-spaced)

Random variables may depend on others, e.g.,

max{(3 — Di+1),0},ifX; <0

.‘X'_ — J i 4 7 . > .
17 U max{(Xy — Diga),0},if X, > 0



Markov Chains

* The stochastic process is said to have a Markovian property if

P{Xi 1 =7j|Xo=ko, X1 =k1,.... X41 = ki1, Xy =1} = P{ X1 = j| Xy =4}

for ¢ = 0.1,... and every sequence ¢i,j,ko,....ki—1.

* Markovian property means that the conditional probability of
a future event given any past events and current state, is
independent of past states and depends only on present

* The conditional probabilities are transition probabilities,
P{Xis1 = j| Xy =1}
 These are stationary if time invariant, denote Pij
P{Xi11 =j| Xt =i} = P{X1 =j|Xo=i},¥t=0,1,...
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Markov Chains

Looking forward in time, n-step transition probabilities, pij(”)

(n) 7
Ponr

P{Xin =jl X, =i} = P{X, = j|Xo =i},Vt =0,1, ...
* One can write a transition matrix, - (™
00
P(n) — :
_(n)
L Py

_(n
0o -+ Py A

* A stochastic process is a finite-state Markov chain if it has,

— Finite number of states

— Markovian property

— Stationary transition probabilities

— A set of initial probabilities P{X, = i} for all i

20/01/17 Reinforcement Learning
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Markov Chains

* n-step transition probabilities can be obtained from 1-step
transition probabilities recursively (Chapman-Kolmogorov)

M
(n) _ (V), (R=V) s s i) e
pij o Zpik PA.j s V2, ], O0<v<n
k=0

* We can get this via the matrix too
pP" =pp.. .P=pP'=pPprlt=prlp

* First Passage Time: number of transitions to go from i to j for
the first time

— Ifi =, this is the recurrence time
— In general, this itself is a random variable
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Markov Chains

e n-step recursive relationship for first passage time

(1) _ (1) _
fij = Pi; = Pij;
(2) _ (2 _ £(D),
fii" = vy — fij Pis»
iy et o) (s L
70 =0 — D0 — P g5
* For fixed i and j, these ;™ are nonnegative numbers so that
S < What does <1 signify?
n=1
o0
« If Y 1V =1 ,stateis recurrent; if so for n=1 then state i is

n=l absorbing
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Markov Chains: Long-Run Properties

* Consider this transition matrix of an inventory process:

- 0.08 0.184 0.368 0.368 |
0.632 0.368 0 0
0.264 0.368 0.368 0
0.08 0.184 0.368 0.368

PY =p=

* This captures the evolution of inventory levels in a store
— What do the 0 values mean?
— Other properties of this matrix?
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Markov Chains: Long-Run Properties

The corresponding 8-step transition matrix becomes:

[ 0.286 0.285 0.264 0.166
0.286 0.285 0.264 0.166
0.286 0.285 0.264 0.166

| 0.286 0.285 0.264 0.166 |

p(8) — p8 —

Interesting property: probability of being in state j after 8
weeks appears independent of initial level of inventory.

* For anirreducible ergodic Markov chain, one has limiting
probability

lim p

n—oo U o \

Reciprocal gives you

M o recurrence time
T = Z TiPij, V] = O M
i=0
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Markov Decision Model

* Consider the following application: machine maintenance

e A factory has a machine that deteriorates rapidly in quality
and output and is inspected periodically, e.g., daily

* Inspection declares the machine to be in four possible states:
— 0: Good as new
— 1: Operable, minor deterioration
— 2: Operable, major deterioration
— 3:Inoperable

* Let X, denote this observed state

— evolves according to some “law of motion”, it is a stochastic process
— Furthermore, assume it is a finite state Markov chain
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* Transition matrix is based on the following:

Markov Decision Model

States | O 1 2 3
0 O 7/8 1 1/16 | 1/16
1 O34 1/8 1/8
2 O O 1/2 1/2
3 O O 0 |

* Once the machine goes inoperable, it stays there until repairs

— If no repairs, eventually, it reaches this state which is absorbing!

* Repair is an action — a very simple maintenance policy.

— e.g., machine from from state 3 to state O

20/01/17

Reinforcement Learning
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* There are costs as system evolves:

— State 0: cost O

— State 1: cost 1000
— State 2: cost 3000

 Replacement cost, taking state 3 to 0, is 4000 (and lost

production of 2000), so cost = 6000
 The modified transition probabilities are:

20/01/17

Markov Decision Model

States | 0 1 2 3
0 O 7/8 1 1/16 | 1/16
1 O34 1/8 1/8
2 O O 1/2 1/2
3 1| 0 0 0

Reinforcement Learning




Markov Decision Model

* Simple question (a behavioural property):
What is the average cost of this maintenance policy?

 Compute the steady state probabilities:

2 T 2 2 How?

* (Long run) expected average cost per day,

25000

07y 4+ 10007, + 30007y + 600073 = — 1923.08

20/01/17 Reinforcement Learning
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Markov Decision Model

* Consider a slightly more elaborate policy:
— Replace when inoperable but if only needing major repairs, overhaul

* Transition matrix now changes a little bit
* Permit one more thing: overhaul

— Go back to minor repairs state (1) for the next time step

— Not possible if truly inoperable, but can go from major to minor
* Key point about the system behaviour. It evolves according to

— “Laws of motion”

— Sequence of decisions made (actions from {1: none,2:overhaul,3: replace})
* Stochastic process is now defined in terms of {X } and {A,}

— Policy, R, is a rule for making decisions

* Could use all history, although popular choice is (current) state-based
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Markov Decision Model

* There is a space of potential policies, e.g.,

Policies | do(R) | d;

) [&®)

R,
Ry,
R,

d

L) L) o —

* Each policy defines a transition matrix, e.g., for R,

States | 0 | 1 2 3
0 O(7/8 | 1/16 | 1/16
1 O34 1/8 1/8
2 0 1 0 0
3 1] O 0 0

Which policy is best?
Need costs....

20/01/17

Reinforcement Learning
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Markov Decision Model

* (), =expected cost incurred during next transition if system is
in state 7 and decision k is made

State

w = O
~ B B

0 6
1 6
2 6
3 6

8
8

* The long run average expected cost for each policy may be
computed using,

M
, , R, is best:
E(C) = CirTi b -
(€) ; kT Work out details at home.
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So, What is a Policy?

e A“program”
 Map from states (or situations in the decision problem) to
actions that could be taken

— e.g., if in ‘level 2’ state, call contractor for overhaul
— If less than 3 DVDs of a film, place an order for 2 more

* A probability distribution 7t(x,a)
— A joint probability distribution over states and actions

— If in a state x,, then with probability defined by 7, take
action a,



Markov Decision Processes

e ‘Static’ view:

Notation:
 Example: - State & s/x

E
:
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MDPs as Bayesian Networks
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A Decision Criterion

 The general approach, that computationally implements the
previous calculations with simultaneous equations over
probabilities is linear programming

* Another approach to dealing with MDPs is via ‘learning’
— Often, treating the discounted, episodic setting

 What is the criterion for adaptation (i.e., learning)?

R t+1 y t+2 t+3 Ey t+k+1°

where y,0 <y <1, is the discount rate.
Fffect of changing y?
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Episodic vs. Infinite: A Unified Notation

* In (discrete) episodic tasks, we could number the time
steps of each episode starting from zero.

 We usually do not have to distinguish between episodes,
so we write S, instead of §, ; for the state at step t of
episode j.

* Think of each episode as ending in an absorbing state that
always produces reward of zero:

. k
 We can cover all cases by writing R, = E)/ Vksl s
k=0

where ¥ can be 1 only if a zero reward absorbing state 1s always reached.
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