Reinforcement Learning

Bandit Problems, Markov Chains and Markov Decision Processes

Subramanian Ramamoorthy
School of Informatics

20 January 2017
What is Reinforcement Learning (RL)?

• An approach to Artificial Intelligence
• Learning from interaction
• Learning about, from, and while interacting (trial and error) with an external environment
• Goal-oriented learning; implying delayed rewards

• Learning what to do—how to map situations to actions—so as to maximize a numerical reward signal
• Can be thought of as a stochastic optimization over time
Setup for RL

Agent (algorithm) is:

- Temporally situated
- Continual learning and planning
- Objective is to affect the environment – actions and states
- Environment is uncertain, stochastic

![Diagram of agent-environment interaction]

Agent → Environment

State, Stimulus, Situation

Reward, Gain, Payoff, Cost

Action, Response, Control

Environment (world) → Agent
Multi-arm Bandits (MAB)

- N possible actions
- You can play for some period of time and you want to maximize reward (expected utility)

Which is the best arm/machine?

DEMO
Numerous Applications!

- Computer Go
- Brain computer interface
- Medical trials

- Packets routing
- Ads placement
- Dynamic allocation
What is the Choice?

<table>
<thead>
<tr>
<th></th>
<th>Arm 1</th>
<th>Arm 2</th>
<th>Arm 3</th>
<th>Arm 4</th>
<th>Arm 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>t=1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.8</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>t=2</td>
<td>0.7</td>
<td>0.1</td>
<td>0.9</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>t=3</td>
<td>0.5</td>
<td>0.3</td>
<td>0.7</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

...
\[n \text{-Armed Bandit Problem} \]

- Choose repeatedly from one of \(n \) actions; each choice is called a \(\text{play} \)
- After each play \(a_t \), you get a reward \(r_t \), where
 \[
 E \{ r_t \mid a_t \} = Q^*(a_t)
 \]
 These are unknown \(\text{action values} \)
 Distribution of \(r_t \) depends only on \(a_t \)

Objective is to maximize the reward in the long term, e.g., over 1000 plays

To solve the \(n \)-armed bandit problem, you must \textbf{explore} a variety of actions and \textbf{exploit} the best of them
Exploration/Exploitation Dilemma

• Suppose you form estimates

\[Q_t(a) \approx Q^*(a) \quad \text{action value estimates} \]

• The greedy action at time \(t \) is \(a_t^* \)

\[
\begin{align*}
 a_t^* &= \arg \max_a Q_t(a) \\
 a_t &= a_t^* \implies \text{exploitation} \\
 a_t &\neq a_t^* \implies \text{exploration}
\end{align*}
\]

Why?

• You can’t exploit all the time; you can’t explore all the time
• You can never stop exploring; but you could reduce exploring.
Action-Value Methods

- Methods that adapt action-value estimates and nothing else, e.g.: suppose by the t-th play, action a had been chosen k_a times, producing rewards $r_1, r_2, \ldots, r_{k_a}$, then

\[
Q_t(a) = \frac{r_1 + r_2 + \cdots + r_{k_a}}{k_a}
\]

“sample average”

\[
\lim_{k_a \to \infty} Q_t(a) = Q^*(a)
\]

What is the behaviour with finite samples?
\(\varepsilon \)-Greedy Action Selection

- Greedy action selection:

\[
a_t = a_t^* = \arg \max_a Q_t(a)
\]

- \(\varepsilon \)-Greedy:

\[
a_t = \begin{cases}
a_t^* & \text{with probability } 1 - \varepsilon \\
\text{random action with probability } \varepsilon & \end{cases}
\]

... the simplest way to balance exploration and exploitation
A simple bandit algorithm

Initialize, for $a = 1$ to k:

- $Q(a) \leftarrow 0$
- $N(a) \leftarrow 0$

Repeat forever:

- $A \leftarrow \begin{cases} \arg \max_a Q(a) & \text{with probability } 1 - \varepsilon \quad \text{(breaking ties randomly)} \\ \text{a random action} & \text{with probability } \varepsilon \end{cases}$
- $R \leftarrow \text{bandit}(A)$
- $N(A) \leftarrow N(A) + 1$
- $Q(A) \leftarrow Q(A) + \frac{1}{N(A)}[R - Q(A)]$
Worked Example: 10-Armed Testbed

- $n = 10$ possible actions

- Each $Q^*(a)$ is chosen randomly from a normal distrib.: $N(0,1)$

- Each r_t is also normal: $N(Q^*(a_t), 1)$

- 1000 plays, repeat the whole thing 2000 times and average the results
10-Armed Testbed Rewards

Run for 1000 steps
Repeat the whole thing 2000 times with different bandit tasks
ε-Greedy Methods on the 10-Armed Testbed

Average reward vs. Plays

% Optimal action vs. Plays

ε = 0.1
ε = 0.01
ε = 0 (greedy)
Incremental Implementation

Sample average estimation method:

The average of the first k rewards is (dropping the dependence on a):

$$Q_k = \frac{r_1 + r_2 + \cdots + r_k}{k}$$

How to do this incrementally (without storing all the rewards)?

We could keep a running sum and count, or, equivalently:

$$Q_{k+1} = Q_k + \frac{1}{k+1} \left[r_{k+1} - Q_k \right]$$

$$NewEstimate = OldEstimate + StepSize \left[Target - OldEstimate \right]$$
Tracking a Non-stationary Problem

Choosing Q_k to be a sample average is appropriate in a stationary problem, i.e., when none of the $Q^*(a)$ change over time,

But not in a nonstationary problem.

The better option in the nonstationary case is:

$$Q_{k+1} = Q_k + \alpha [r_{k+1} - Q_k]$$

for constant α, $0 < \alpha \leq 1$

$$= (1 - \alpha)^k Q_0 + \sum_{i=1}^{k} \alpha (1 - \alpha)^{k-i} r_i$$

exponential, recency-weighted average
Optimistic Initial Values

- All methods so far depend on $Q_0(a)$, i.e., they are biased
- Encourage exploration: initialize the action values optimistically, i.e., on the 10-armed testbed, use $Q_0(a) = 5$ for all a
Softmax Action Selection

• Softmax action selection methods grade action probabilities by estimated values.
• The most common softmax uses a Gibbs, or Boltzmann, distribution:

Choose action a on play t with probability

$$e^{Q_t(a)/\tau} \over \sum_{b=1}^{n} e^{Q_t(b)/\tau},$$

where τ is a 'computational temperature'.
Another Interpretation of MAB Problems

Related to ‘rewards’

\[\ell_1 \] \[\ell_2 \] \[\ell_d \]

Player

\[A \in \{1, \ldots, d\} \]

loss suffered: \[\ell_A \]
MAB is a Special Case of Online Learning

Player

\[\ell_1, \ldots, \ell_d \]

Feedback:

\[1: \text{CNN} \]

\[\ell_1 \]

\[2: \text{NBC} \]

\[\ell_2 \]

\[d: \text{ABC} \]

\[\ell_d \]

loss suffered: \(\ell_A \)

\(A \in \{1, \ldots, d\} \)
How to Evaluate Online Alg.: Regret

• After you have played for \(T \) rounds, you experience a regret:

 \[\rho = T \mu^* - \sum_{t=1}^{T} \hat{r}_t = T \mu^* - \sum_{t=1}^{T} E[r_i(t)] \]

 \[\mu^* = \max_k \mu_k \]

• If the average regret per round goes to zero with probability 1, asymptotically, we say the strategy has **no-regret** property

 ~ guaranteed to converge to an optimal strategy

• \(\epsilon \)-greedy is sub-optimal (so has some regret). *Why?*
Interval Estimation

- Attribute to each arm an “optimistic initial estimate” within a certain confidence interval
- Greedily choose arm with highest optimistic mean (upper bound on confidence interval)

- Infrequently observed arm will have over-valued reward mean, leading to exploration
- Frequent usage pushes optimistic estimate to true values
Interval Estimation Procedure

- Associate to each arm $100(1-\alpha)\%$ reward mean upper band

- Assume, e.g., rewards are normally distributed
- Arm is observed n times to yield empirical mean & std dev
- α-upper bound:
 \[
 u_\alpha = \hat{\mu} + \frac{\hat{\sigma}}{\sqrt{n}} c^{-1}(1 - \alpha)
 \]
 \[
 c(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} \exp\left(-\frac{x^2}{2}\right) dx \quad \text{Cum. Distribution Function}
 \]

- If α is carefully controlled, could be made zero-regret strategy
 - In general (i.e., for other distributions), we don’t know
Reminder: Chernoff-Hoeffding Bound

Let X_1, X_2, \ldots, X_n be independent random variables in the range $[0, 1]$ with $\mathbb{E}[X_i] = \mu$. Then for $a > 0$,

$$P \left(\frac{1}{n} \sum_{i=1}^{n} X_i \geq \mu + a \right) \leq e^{-2a^2n}$$
Variant: UCB Strategy

- Again, based on notion of an upper confidence bound but more generally applicable

- Algorithm:
 - Play each arm once
 - At time $t > K$, play arm i_t maximizing

$$\bar{r}_j(t) + \sqrt{\frac{2\ln t}{T_{j,t}}}$$

$T_{j,t}$: number of times j has been played so far
UCB Strategy

Intuition:
The second term $\sqrt{2 \ln t / T_{j,t}}$ is the size of the one-sided $(1 - 1/t)$-confidence interval for the average reward (using Chernoff-Hoeffding bounds).

true expected reward upper confidence bound
We will not prove the following result, but I quote the theorem to explain the benefit of UCB – regret is bounded.

Theorem

(Auer, Cesa-Bianchi, Fisher) At time T, the regret of the UCB policy is at most

$$\frac{8K}{\Delta^*} \ln T + 5K,$$

where $\Delta^* = \mu^* - \max_{i: \mu_i < \mu^*} \mu_i$ (the gap between the best expected reward and the expected reward of the runner up).
Empirical Behaviour: UCB

- ϵ-greedy $\epsilon = 0.1$
- UCB $c = 2$

Average reward vs. Steps
Variation on SoftMax: \[\frac{e^{Q_t(a)/\tau}}{\sum_{b=1}^n e^{Q_t(b)/\tau}} \]

- It is possible to drive regret down by annealing \(\tau \)
- Exp3: Exponential weight alg. for exploration and exploitation
- Probability of choosing arm \(k \) at time \(t \) is

\[
P_k(t) = (1 - \gamma) \frac{w_k(t)}{\sum_{j=1}^K w_j(t)} + \frac{\gamma}{K}
\]

\[
w_j(t + 1) = \begin{cases} w_j(t) \exp \left(\gamma \frac{r_j(t)}{P_j(t)K} \right) & \text{if arm } j \text{ is pulled at } t \\ w_j(t) & \text{otherwise} \end{cases}
\]

Regret \(\approx O(\sqrt{KT \log(K)}) \)

\(\gamma \) is a user defined open parameter

20/01/17 Reinforcement Learning
The Gittins Index

- Each arm delivers reward with a probability
- This probability may *change* through time but only when arm is pulled
- Goal is to maximize discounted rewards – future is discounted by an exponential discount factor $\delta < 1$
- The structure of the problem is such that, all you need to do is compute an “index” for each arm and play the one with the highest index
- Index is of the form:

$$\nu_i = \sup_{T>0} \frac{\left\langle \sum_{t=0}^{T} \delta^t R^i(t) \right\rangle}{\left\langle \sum_{t=0}^{T} \delta^t \right\rangle}$$
Gittins Index – Intuition

• We will not give a proof of its optimality now, and will return to that issue later in the course.
• Analysis is based on stopping time: the point where you should ‘terminate’ a bandit arm

• Nice Property: Gittins index for any given bandit is independent of expected outcome of all other bandits
 – Once you have a good arm, keep playing until there is a better one
 – If you add/remove machines, computation doesn’t really change
BUT:
 – hard to compute, even when you know the distributions
 – Exploration issues; arms aren’t updated unless used (restless bandits?)
What About State Changes?

• In MAB, we were in a single casino and the only decision is to pull from a set of \(n \) arms
 – Some change, perhaps, if an adversary were introduced...

Next,

• What if there is more than one state?
• So, in this state space, what is the effect of the distribution of payout changing based on how you pull arms?
• What happens if you only obtain a net reward corresponding to a long sequence of arm pulls (at the end)?
Decision Making Agent-Environment Interface

Agent and environment interact at discrete time steps: $t = 0, 1, 2, \ldots$

Agent observes state at step t: $s_t \in S$

produces action at step t: $a_t \in A(s_t)$

gets resulting reward: $r_{t+1} \in \mathbb{R}$

and resulting next state: s_{t+1}

\cdots s_t a_t r_{t+1} s_{t+1} a_{t+1} r_{t+2} s_{t+2} a_{t+2} r_{t+3} s_{t+3} a_{t+3} \cdots
Markov Decision Processes

- A model of the agent-environment system
- **Markov** property = history doesn’t matter, only current state
- If state and action sets are finite, it is a **finite MDP**.
- To define a finite MDP, you need to give:
 - state and action sets
 - one-step “dynamics” defined by **transition probabilities**:
 \[P_{ss'}^a = \Pr \{ s_{t+1} = s' \mid s_t = s, a_t = a \} \quad \text{for all } s, s' \in S, a \in A(s). \]
 - reward probabilities:
 \[R_{ss'}^a = E \{ r_{t+1} \mid s_t = s, a_t = a, s_{t+1} = s' \} \quad \text{for all } s, s' \in S, a \in A(s). \]
An Example Finite MDP

Recycling Robot

• At each step, robot has to decide whether it should (1) actively search for a can, (2) wait for someone to bring it a can, or (3) go to home base and recharge.

• Searching is better but runs down the battery; if it runs out of power while searching then it has to be rescued (which is bad).

• Decisions made on the basis of current energy level: high, low.

• **Reward** = number of cans collected
Recycling Robot MDP

\[A(\text{high}) \triangleq \{\text{search, wait}\} \]
\[A(\text{low}) \triangleq \{\text{search, wait, recharge}\}. \]

Rewards while searching/waiting:

\[r_{\text{search}} > r_{\text{wait}} \]
If you were given this much, what can you say about the behaviour (over time) of the system?
Very Brief Primer on Markov Chains
Stochastic Processes

• A *stochastic process* is an indexed collection of random variables \(\{X_t\} \)
 – e.g., collection of weekly demands for a product

• One type: At a particular time \(t \), labelled by integers, system is found in exactly one of a finite number of mutually exclusive and exhaustive categories or *states*, labelled by integers too

• Process could be *embedded* in that time points correspond to occurrence of specific events (or time may be equi-spaced)

• Random variables may depend on others, e.g.,

\[
X_{t+1} = \begin{cases}
\max \{(3 - D_{t+1}), 0\}, & \text{if } X_t < 0 \\
\max \{X_t - D_{t+1}, 0\}, & \text{if } X_t \geq 0
\end{cases}
\]
Markov Chains

• The stochastic process is said to have a Markovian property if

\[P\{X_{t+1} = j|X_0 = k_0, X_1 = k_1, ..., X_{t-1} = k_{t-1}, X_t = i\} = P\{X_{t+1} = j|X_t = i\} \]

for \(t = 0, 1, ... \) and every sequence \(i, j, k_0, ..., k_{t-1} \).

• Markovian property means that the conditional probability of a future event given any past events and current state, is independent of past states and depends only on present.

• The conditional probabilities are transition probabilities,

\[P\{X_{t+1} = j|X_t = i\} \]

• These are stationary if time invariant, denote \(p_{ij} \),

\[P\{X_{t+1} = j|X_t = i\} = P\{X_1 = j|X_0 = i\}, \forall t = 0, 1, ... \]
Markov Chains

• Looking forward in time, n-step transition probabilities, $p_{ij}^{(n)}$

$$P\{X_{t+n} = j|X_t = i\} = P\{X_n = j|X_0 = i\}, \forall t = 0, 1, ...$$

• One can write a transition matrix,

$$P^{(n)} = \begin{bmatrix} p_{00}^{(n)} & \cdots & p_{0M}^{(n)} \\ \vdots & \ddots & \vdots \\ p_{M0}^{(n)} & \cdots & p_{MM}^{(n)} \end{bmatrix}$$

• A stochastic process is a finite-state Markov chain if it has,
 – Finite number of states
 – Markovian property
 – Stationary transition probabilities
 – A set of initial probabilities $P\{X_0 = i\}$ for all i
Markov Chains

- n-step transition probabilities can be obtained from 1-step transition probabilities recursively (Chapman-Kolmogorov)

$$p^{(n)}_{ij} = \sum_{k=0}^{M} p^{(v)}_{ik} p^{(n-v)}_{kj}, \forall i, j, n; 0 \leq v \leq n$$

- We can get this via the matrix too

$$P^{(n)} = P \cdot P \ldots P = P^n = P \cdot P^{n-1} = P^{n-1} P$$

- **First Passage Time**: number of transitions to go from i to j for the first time
 - If $i = j$, this is the recurrence time
 - In general, this itself is a random variable
Markov Chains

• \(n\)-step recursive relationship for first passage time

\[
\begin{align*}
 f_{ij}^{(1)} &= p_{ij}^{(1)} = p_{ij}, \\
 f_{ij}^{(2)} &= p_{ij}^{(2)} - f_{ij}^{(1)} p_{jj}, \\
 &\vdots \\
 f_{ij}^{(n)} &= p_{ij}^{(n)} - f_{ij}^{(1)} p_{jj}^{(n-1)} - f_{ij}^{(2)} p_{jj}^{(n-2)} - \cdots - f_{ij}^{(n-1)} p_{jj}^{(n-1)}
\end{align*}
\]

• For fixed \(i \) and \(j \), these \(f_{ij}^{(n)} \) are nonnegative numbers so that

\[
\sum_{n=1}^{\infty} f_{ij}^{(n)} \leq 1
\]

What does \(<1 \) signify?

• If \(\sum_{n=1}^{\infty} f_{ii}^{(n)} = 1 \), state is \textbf{recurrent}; if so for \(n=1 \) then state \(i \) is \textbf{absorbing}
Markov Chains: Long-Run Properties

• Consider this transition matrix of an inventory process:

\[
P(1) = P = \begin{bmatrix}
0.08 & 0.184 & 0.368 & 0.368 \\
0.632 & 0.368 & 0 & 0 \\
0.264 & 0.368 & 0.368 & 0 \\
0.08 & 0.184 & 0.368 & 0.368 \\
\end{bmatrix}
\]

• This captures the evolution of inventory levels in a store
 – What do the 0 values mean?
 – Other properties of this matrix?
The corresponding 8-step transition matrix becomes:

\[
P^{(8)} = P^8 = \begin{bmatrix}
0.286 & 0.285 & 0.264 & 0.166 \\
0.286 & 0.285 & 0.264 & 0.166 \\
0.286 & 0.285 & 0.264 & 0.166 \\
0.286 & 0.285 & 0.264 & 0.166
\end{bmatrix}
\]

Interesting property: probability of being in state \(j \) after 8 weeks appears independent of initial level of inventory.

- For an irreducible ergodic Markov chain, one has limiting probability

\[
\lim_{n \to \infty} p^{(n)}_{ij} = \pi_j
\]

\[
\pi_j = \sum_{i=0}^{M} \pi_i p_{ij}, \forall j = 0, ..., M
\]

Reciprocal gives you recurrence time
Markov Decision Model

• Consider the following application: machine maintenance
• A factory has a machine that deteriorates rapidly in quality and output and is inspected periodically, e.g., daily
• Inspection declares the machine to be in four possible states:
 – 0: Good as new
 – 1: Operable, minor deterioration
 – 2: Operable, major deterioration
 – 3: Inoperable
• Let X_t denote this observed state
 – evolves according to some “law of motion”, it is a stochastic process
 – Furthermore, assume it is a finite state Markov chain
Markov Decision Model

- Transition matrix is based on the following:

<table>
<thead>
<tr>
<th>States</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>7/8</td>
<td>1/16</td>
<td>1/16</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3/4</td>
<td>1/8</td>
<td>1/8</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Once the machine goes inoperable, it stays there until repairs
 - If no repairs, eventually, it reaches this state which is absorbing!

- Repair is an action – a very simple maintenance policy.
 - e.g., machine from state 3 to state 0
Markov Decision Model

• There are costs as system evolves:
 – State 0: cost 0
 – State 1: cost 1000
 – State 2: cost 3000

• Replacement cost, taking state 3 to 0, is 4000 (and lost production of 2000), so cost = 6000

• The modified transition probabilities are:

<table>
<thead>
<tr>
<th>States</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>7/8</td>
<td>1/16</td>
<td>1/16</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3/4</td>
<td>1/8</td>
<td>1/8</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Markov Decision Model

• Simple question (a behavioural property):

 What is the average cost of this maintenance policy?

• Compute the steady state probabilities:

\[
\pi_0 = \frac{2}{13}; \pi_1 = \frac{7}{13}; \pi_2 = \frac{2}{13}; \pi_3 = \frac{2}{13}
\]

• (Long run) expected average cost per day,

\[
0\pi_0 + 1000\pi_1 + 3000\pi_2 + 6000\pi_3 = \frac{25000}{13} = 1923.08
\]
Markov Decision Model

• Consider a slightly more elaborate policy:
 – Replace when inoperable but if only needing major repairs, overhaul
• Transition matrix now changes a little bit
• Permit one more thing: overhaul
 – Go back to minor repairs state (1) for the next time step
 – Not possible if truly inoperable, but can go from major to minor
• Key point about the system behaviour. It evolves according to
 – “Laws of motion”
 – Sequence of decisions made (actions from \{1: none, 2: overhaul, 3: replace\})
• Stochastic process is now defined in terms of \{X_t\} and \{\Delta_t\}
 – Policy, \(R\), is a rule for making decisions
 • Could use all history, although popular choice is (current) state-based
Markov Decision Model

• There is a space of potential policies, e.g.,

<table>
<thead>
<tr>
<th>Policies</th>
<th>$d_0(R)$</th>
<th>$d_1(R)$</th>
<th>$d_2(R)$</th>
<th>$d_3(R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_a</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>R_b</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>R_c</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R_d</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

• Each policy defines a transition matrix, e.g., for R_b

<table>
<thead>
<tr>
<th>States</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>7/8</td>
<td>1/16</td>
<td>1/16</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3/4</td>
<td>1/8</td>
<td>1/8</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Which policy is best? Need costs….
Markov Decision Model

- $C_{ik} = \text{expected cost incurred during next transition if system is in state } i \text{ and decision } k \text{ is made}$

<table>
<thead>
<tr>
<th>State</th>
<th>Dec.</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

- The long run average expected cost for each policy may be computed using,

\[
E(C) = \sum_{i=0}^{M} C_{ik} \pi_i
\]

R_b is best:
Work out details at home.
So, What is a Policy?

• A “program”
• Map from states (or situations in the decision problem) to actions that could be taken
 – e.g., if in ‘level 2’ state, call contractor for overhaul
 – If less than 3 DVDs of a film, place an order for 2 more

• A probability distribution $\pi(x,a)$
 – A joint probability distribution over states and actions
 – If in a state x_1, then with probability defined by π, take action a_1
Markov Decision Processes

• ‘Static’ view:

• Example:

Notation: State $\Leftrightarrow s/x$
MDPs as Bayesian Networks
A Decision Criterion

• The general approach, that computationally implements the previous calculations with simultaneous equations over probabilities is linear programming
• Another approach to dealing with MDPs is via ‘learning’
 – Often, treating the discounted, episodic setting
• What is the criterion for adaptation (i.e., learning)?

\[
R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1},
\]

where \(\gamma, 0 \leq \gamma \leq 1 \), is the discount rate.

Effect of changing \(\gamma \)?
Episodic vs. Infinite: A Unified Notation

• In (discrete) episodic tasks, we could number the time steps of each episode starting from zero.

• We usually do not have to distinguish between episodes, so we write \(S_t \) instead of \(S_{t,j} \) for the state at step \(t \) of episode \(j \).

• Think of each episode as ending in an absorbing state that always produces reward of zero:

\[
\begin{align*}
S_0 & \xrightarrow{r_1 = +1} S_1 \xrightarrow{r_2 = +1} S_2 \xrightarrow{r_3 = +1} \text{absorbing state} \\
& \quad \vdots
\end{align*}
\]

• We can cover all cases by writing \(R_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \),

where \(\gamma \) can be 1 only if a zero reward absorbing state is always reached.
Acknowledgements

• The Markov Chains and MDP formulation slides are adapted from chapters in F.S. Hillier & G.J. Lieberman, Operations Research, 2nd ed.

• Initial slides on MAB and some later slides on reinforcement learning formulation are adapted from web resources associated with Sutton and Barto’s book.