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Problem of Learning from Interaction

»with environment
»to achieve some goal

* Baby playing. No teacher. Sensorimotor connection to
environment.

— Cause <-> effect
— Action <-> consequences
— How to achieve goals
* Learning to drive a car, hold conversation, etc.

 Environment’s response affects our subsequent actions
e We find out the effects of our actions later
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Rough History of RL Ideas

Psychology — learning by trial and error

... actions followed by good or bad outcomes have their
tendency to be reselected altered accordingly

- Selectional: try alternatives and pick good ones
- Associative: associate alternatives with particular situations

Computational studies (e.g., credit assignment problem)

— Minsky’ s SNARC, 1950
— Michie’ s MENACE, BOXES, etc. 1960s

Temporal Difference learning (Minsky, Samuel, Shannon, ...)
— Driven by differences between successive estimates over time



Rough History of RL, contd.

* |n 1970-80, many researchers, e.g., Klopf, Sutton & Barto,...,
looked seriously at issues of “getting results from the
environment’ as opposed to supervised learning

— Although supervised learning methods such as backpropagation
were sometimes used, emphasis was different

e Stochastic optimal control (mathematics, operations
research)

— Deep roots: Hamilton-Jacobi - Bellman/Howard

— By the 1980s, people began to realize the connection between
MDPs and the RL problem as above...



What is the Nature of the Problem?

* Asyou can tell from the history, many ways to understand the
problem — you will see this as we proceed through course

* Unifying perspective:
— Sequential decision making
— Stochastic optimization over time

* Let us unpack this through a few application examples...
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Example Domain: Robotics

Adversarial Perception
actions & other

agents

High-level
goals

Adversarial
actions & other
agents

Action

Problem: How to generate actions, to achieve high-level goals, using limited.
perception and incomplete knowledge of environment?
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Example Domain:
Natural Language Dialogue

Custom program for
User's Speech actions

(sound wave data) - Determines system's action
depending on user’s speech

Predefined System

Speech Character
Recognizer

- Timing to speak
- How friendly/polite
- Interaction strategy etc.

G;gue Context

Manager

- Location
Decides system’s T
action depending Time
of multiple info. - Database

S - Interaction history etc.

System dynamically decides its actions
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How to Model Decisions, Computationally?

* Who makes them?
— Individual
— ‘Group’
 What are the conditions?
— Certainty
— Risk
— Uncertainty

For most of this course, we’ll take the ‘individual’ viewpoint
and we’ll be somewhere in between risk and uncertainty
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How to Model Decision under Certainty?

* Given a set of possible acts
 Choose one that maximizes some given index

If a is a generic act in a set of feasible acts A, f(a) is an index
being maximized, then

Problem: Find a* in A such that f(a*) > f(a) for all a in A.

The index f plays a key role, e.g., think of buying a painting.
Essential problem: How should the subject select an index
function such that her choice reduces to finding maximizers?
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An Operational Way to Find Index Function

* Observe subject’s behaviour in restricted settings and predict
purchase behaviour from that:

* Instruct the subject as follows:
— Here are ten valuable reproductions
— We will present these to you in pairs
— You will tell us which one of the pair you prefer to own

— After you have evaluated all pairs, we will pick a pair at random and
present you with the choice you previously made (it is to your
advantage to remember your true tastes)

* The subject’s behaviour is as though there is a ranking over all
paintings, so each painting can be summarized by a number
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Some Desiderata of this Ranking

* Transitivity: Previous argument only makes sense if the rank is
transitive — if A is preferred in (A, B) and B is preferred in (B,
C) then A is preferred in (A, C); and this holds for all triples of
alternatives A, Band C

* Ordinal nature of index: One is tempted to immediately turn
the ranking into a latent measure of ‘satisfaction’ but that is
premature as utilities need not be unique.

e.g., we could assign 3 utiles to A, 2 utiles to B and 1 utile to C
to explain the choice behaviour

Equally, 30, 20.24 and 3.14 would yield the same choice

While it is OK to compare indices, it isn’t (yet) OK to add/multiply



What Happens if we Relax Transitivity?

 Assume Pandora says (in the pairwise comparisons):
— Apple < Orange
— Orange < Fig
— Fig < Apple

 Why is this a problem for Pandora?

* Assume a merchant who transacts with her as follows:
— Pandora has an Apple at the start of the conversation
— He offers to exchange Orange for Apple, if she gives him a penny
— He then offers an exchange of Fig for Orange, at the price of a penny
— Then, offers Apple for the Fig, for a penny
— Now, what is Pandora’s net position?
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Decision Making under Risk

* |Initially appeared as analysis of fair gambles, needed some
notions of utility
* Gamble has n outcomes, each worth a,, ..., a,
* The probability of each outcomeis p,, ..., p,,
* How much is it worth to participate in this gamble?
b=a,p,+..+a,p,

One may treat this monetary expected value as a fair price

Is this a sufficient description of choice behaviour under risk?
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St. Petersburg Paradox of D. Bernoulli

e Afair coin is tossed until a head appears
 Gambler receives 2" if the first head appears on trial n

* Probability of this event = probability of tail in first (n-1) trials
and head on trial n, i.e., (1/2)"

Expected value = 2.(1/2)+ 4.(1/2)° + 8(1/2)3 +... = o

* Are you willing to bet in this way? Is anyone?
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Defining Utility

* Bernoulli went on to argue that people do not act in this way

* The thing to average is the ‘intrinsic worth’ of the monetary
values, not the absolute values

e.g., intrinsic worth of money may increase with money but at
a diminishing rate

* Let us say utility of m is log,,m, then expected value is,
log;,2.(1/2) + log,;,4.(1/2)° + log,,8.(1/2)3 +... = b <
Monetary fair price of the gamble is a where log,,a = b.



Some Critiques of Bernoulli’ s Formulation

von Neumann and Morgenstern (vNM), who initiated the
formal study of game theory, raised the following questions:

* The assignment of utility to money is arbitrary and ad hoc

— There are an infinity of functions that capture ‘diminishing rate’,
how should we choose?

— The association may vary from person to person

 Why is the definition of the decision based upon expected
value of the utility?
— Is this actually descriptive of a single gambler, in one-shot choice?
— How to define/constrain utility?
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von Neumann & Morgenstern Formulation

* If apersonis able to express preferences between every
possible pair of gambles

where gambles are taken over some basic set of alternatives

* Then one can introduce utility associations to the basic
alternatives in such a manner that

* If the person is guided solely by the utility expected value, he
is acting in accord with his true tastes.

— provided his tastes are consistent in some way
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Constructing Utility Functions

* Suppose we know the following preference order:
— A<b~c<d<e

* The following are utility functions that capture this:
U 0 1/2 1/2 3/4 1
Vv -1 1 1 2 3

W -8 0 0 1 8

— So, in situations like St Petersburg paradox, the revealed preference of
any realistic player may differ from the case of infinite expected value

— Satisfaction at some large value, risk tolerance, time preference, etc.
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Certainty Equivalents and Indifference

* The previous statement applies equally well to certain events
and gambles or lotteries

* So, even attitudes regarding tradeoffs between the two ought
to be captured

e Basic issue —how to compare?
* |magine the following choice (A >B > C pref.) : (a) you get B
for certain, (b) you get A with probability p and C otherwise

 Ifpisnear 1, option b is better; if p is near 0, then option a:
there is a single point where we switch

* Indifference is described as something like
(2/3) (1) +(1-2/3) (0) =2/3
A C B
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Decision Making under Uncertainty

A choice must be made from among a setof acts, A4,, ..., A,

The relative desirability of these acts depends on which state
of nature prevails, eithers,, ..., s

n.
As decision maker we know that one of several things is true
and this influences our choice

Key point about decision making: whether or not you have a
probabilistic characterization of alternatives has a big impact
on how to approach the problem



Example: Savage’s Omelet Problem

Your friend has broken 5 good eggs into a bowl when you come
in to volunteer and finish the omelet.

A sixth egg lies unbroken (you must use it or waste it
altogether).

Your three acts: break it into bowl, break it into saucer — inspect
and pour into bowl, throw it uninspected
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Decision in Savage’s Omelet Problem

Table 1. Savage's example illustrating acts, states, and consequences

Act State
Good Rotten

Break into bowl six-egg omelet no omelet, and five good

eggs destroyed

Break into saucer| six-egg omelet, and a five-egg omelet, and a
saucer to wash saucer to wash

Throw away five-egg omelet, and five-egg omelet
one sood egg destroyed

* To each outcome, we could assign a utility and maximize it

 What do we know about the state of nature?
— We may act as though there is one true state, we just don’t know it
— If we assume a probability over s,, this is decision under risk
— If we do not assume a probability over s, what might one do?
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