Reinforcement Learning

Policy Optimization and Planning
(Material not examinable)

Subramanian Ramamoorthy
School of Informatics

31 March, 2017

Plan for Lecture: Policies and Plans

* Policy Optimization
— Policies can be optimized directly, without learning value
functions

— Policy-gradient methods

— Special case: how could we learn with real-valued
(continuous) actions

* Planning
— Uses of “environment models”
— Integration of planning, learning, and execution
— “Model-based reinforcement learning”

31/03/2017

Policy-gradient methods

(Note: slightly different notation in this section,
following 2" ed. of S+B)

Approaches to control

1. Previous approach: Action-value methods:
— learn the value of each (state-)action;
— pick the max, usually
2. New approach: Policy-gradient methods:
— learn the parameters of a stochastic policy
— update by gradient ascent in performance

— includes actor-critic methods, which learn both value
and policy parameters

31/03/2017

Actor-critic architecture

b
\ .
> Policy
\
Actor
By TD
Critic : error
state % Valu.e
Function
// A
reward

World
31/03/2017

action

Why Approximate Policies rather than
Values?

* In many problems, the policy is simpler to
approximate than the value function

* In many problems, the optimal policy is stochastic
— e.g., bluffing, POMDPs

* To enable smoother change in policies

 To avoid a search on every step (the max)

 To better relate to biology

31/03/2017

Policy Approximation

* Policy = a function from state to action
— How does the agent select actions?
— In such a way that it can be affected by learning?
— In such a way as to assure exploration?

* Approximation: there are too many states and/or
actions to represent all policies

— To handle large/continuous action spaces

Gradient Bandit Algorithm

® Store action preferences Hi(a)
rather than action-value estimates ();(a)

e Instead of e-greedy, pick actions by an exponential soft-max:

Pr{di—a} =
I = A ¢ = = T+l A
® Also store the sample average of rewards as Ry Os(Ay)
: ‘T T}l;lfﬁ
® Then update: OHi(a)
Hiiq(a) = Hy(a) + Q(Rt — Rt) (1aza, — me(a))

\

| or 0, depending on whether
the predicate (subscript) is true

31/03/2017

Core Principle: Policy Gradient Methods

 Parameterized policy selects actions without consulting a
value function

e VF can still be used to learn the policy weights
— But not needed for action selection
* Gradient ascent on a performance measure 1(6) with respect
to policy weights

A

Ht_|_1 — (975 + Oan(é’t)

~

Expectation approximates
the gradient (hence “policy gradient”)

31/03/2017

Linear-exponential policies
(discrete actions)

® The “preference” for action «a in state s is linear
in @ and a state-action feature vector ¢(s,a)

® The probability of action a in state s is
exponential in its preference

T Factor to modulate
m(als, 8) = exp(0_ (s, a)) TD update, going
| > exp(0T (s, b)) - beyond TD(0) to

,,,,, TD(X)
® Corresponding(eligibility function:

Vr(als,0)
(s 0) (s,a) Z’T bls, 0)¢p

31/03/2017 10

Action o8]
prob.
density

31/03/2017

eg, linear-gaussian policies

(continuous actions)

T I T T I Ll I Ll I T I T

I T

A

In the state

\

HU=0, 02=0.2, ==
H=0, O0?=1.0, m—| -
H=0, 0?=5.0, ==
H=-2, 0?=0.5, ==

u etmd o linear -

\ i
[] 1 . P j./ L L L L \li M M P
-5 -4 -3 -2 - 1 2 3 4 5
action

eg, linear-gaussian policies
(continuous actions)

® The mean and std. dev. for the action taken in
state s are linear and linear-exponential in

0 — (9;; HJ)T [(s) = 0;¢(.9) o(s) = exp(@iqﬁ(s)

® The probability density function for the action
taken in state s is gaussian

. - 1 ox . (a' B ILL(S))Q
mlals,6) = o(s)V2m P (20(s)?)

31/03/2017 12

31/0

Gaussian eligibility functions

Vo, (als, 0) 1

7T(CL‘S,9) — 0(3)2 (a_ M(S))¢M(S)

Vo, m(als, 0) ((a — 1u(s))’
m(als,)

1) et

3/2017

Policy Gradient Setup

Given a policy parameterization:

VGﬂ'(a|8,0)
m(als, O — :
(als, 0) (als.0) Vg log m(als, 0)
And objective:

7}(0) = Urg (SO) (or average reward)

Approximate stochastic gradient ascent:

————

0111 = 0y + aVn(6;)
Typically, based on the Policy-Gradient Theorem:
Vn(0) = dr(s) > ax(s.a)Ver(als.0)

31/03/2017 14

REINFORCE: Monte-Carlo Policy Gradient,
from Policy Gradient Theorem

Vn(0) => dx(s)) ax(s,a)Ver(als,0).

=E.|+* Z qr(St,a)Vem(alSt, 0)]

I Ve (alS;, 0
=E|+* Z 7(a|St, 8)qx(St, a) Tr((f|5|'t-t9))w
Vo (A¢|St,0)

Tr(AtlSt, 0)
[t Ve’/'r(At|St_,0)]

= E.|1'G
T TR (AL 0)

= Ex |7 qx(St, At)] (replacing a by the sample A; ~ 7)

(because EW[thst_, At] = qW(Sta At))

Thus

— VQW(Atlst,O)
0 £9, +-aVn(0;) 20, - oG
t+1 t)(t) t v Gt W(At|5t,9)

31/03/2017 15

The generality of the
policy-gradient strategy

* Can be applied whenever we can compute the effect of
parameter changes on the action probabilities, V= (4;|S;.8)

e.g., has been applied to spiking neuron models

 There are many possibilities other than linear-exponential
and linear-gaussian

— e.g., mixture of random, argmax, and fixed-width
gaussian; learn the mixing weights, drift/diffusion models

31/03/2017 16

Planning

31/03/2017

Paths to a Policy

Environmental
Interaction

Experience

Direct RL
methods

Model-based RL

Greedificatid

Direct
planning

Value
unction

18

31/03/2017

\

Schematic

EVALUATION
FUNCTION .
Heuristic
Reward
A (scalar)
Y
Reward POLICY
(scalar)
State
Action
WORLD

OR

WORLD MODEL J AITCH

19

Models

Model: anything the agent can use to predict how the
environment will respond to its actions

Distribution model: description of all possibilities and their
probabilities

—eg., P,andR_ foralls, s', and a EA(s)
Sample model: produces sample experiences

— e.g., a simulation model

Both types of models can be used to produce simulated
experience

Often sample models are much easier to come by

31/03/2017

Planning

* Planning: any computational process that uses a model to

create or improve a policy o
planning

model » policy
* Planning in AL

— state-space planning

— plan-space planning (e.g., partial-order planner)
* We take the following (unusual) view:

— all state-space planning methods involve computing
value functions, either explicitly or implicitly

— they all apply backups to simulated experience

simulated backups

. » valuess — ——» polic
experience polcy

model

31/03/2017 21

Planning Cont.

* C(lassical DP methods are state-space planning methods
* Heuristic search methods are state-space planning methods

* A planning method based on Q-learning:

Do forever:
1. Select a state, s € S, and an action, a € A(s), at random
2. Send s, a to a sample model, and obtain
a sample next state, s’, and a sample next reward, r
3. Apply one-step tabular Q-learning to s,a,s’,r:
Q(s,a) «— Q(s,a) + afr + ymaxy Q(s',a’) — Q(s,a)]

Random-Sample One-Step Tabular Q-Planning

31/03/2017 22

Paths to a Policy: Dyna

Environmental Direct
planning

Interaction

Value
~Inction

Pyna

31/03/2017

23

Learning, Planning, and Acting

* Two uses of real experience:

value/pollcy

— model learning: to

improve the model acting
— direct RL: to directly planning d'éeLCT

improve the value

fuantlon and pOhC}f model experlence

* Improving value function
and/or policy via a model is
model

sometimes called indirect learning
RL or model-based RL.
Here, we call it planning.

24

Direct vs. Indirect RLL

* Indirect methods: * Direct methods
— make fuller use of — simpler
experience: get better — not affected by bad
policy with fewer models

environment interactions

But they are very closely related and can be usefully combined:

planning, acting, model learning, and direct RL can occur simultaneously
and in parallel

31/03/2017 25

The Dyna Architecture (Sutton 1990)
/SN

/ \
P/olicy/value funct\ions

planning update

direct RL simulated
update experience
P (real]
experience
k P model search
learning control
Model

[Environ ment]

31/03/2017

26

The Dyna-Q Algorithm

Initialize Q(s,a) and Model(s,a) for all s € S and a € A(s)
Do forever:
(a) s « current (nonterminal) state
(b) a « e-greedy(s, Q)
(c) Execute action a; observe resultant state, s’, and reward, r |
(d) Q(s,a) «— Q(s,a) + afr + ymaxy Q(s’,a’) — Q(s,a)] djrect RL
(e) Model(s,a) < s’,r (assuming deterministic environment) < model learning
(f) Repeat N times:
s «— random previously observed state
a «— random action previously taken in s «— planning
s',r «— Model(s,a)
Q(s,a) « Q(s,a) + a[r +ymaxy Q(s',a’) — Q(s, a)]

31/03/2017 27

Dyna-Q on a Simple Maze

G
800
S
600+ . actions
Steps 0 planning steps rewards = 0 until goal, when =1
per 400 (direct RL only)
Spisode 5 planning steps
50 planning steps
200+
144 —
| | T T T 1
2 10 20 30 40 50

Episodes

31/03/2017 -

Dyna-Q Snapshots:

Midway 1n 2nd Episode

WITHOUT PLANNING (N=0)

- G

WITH PLANNING (N=

50)

i

——

——

J

——

'

J

'
i

31/03/2017

naib AR AR A nalne

——

'
J
J
i

-~V

* —»—»—»—»Q

29

When the Model 1s Wrong:
Blocking Maze

The changed envirnoment is harder

G ; G

S : S

150-

Cumulative
reward

0 1000 2000 3000
31/03/2017 Time steps

Shortcut Maze

The changed environment is easier

G : G

S : S

400+

Cumulative
reward

0 3000 6000
31/03/2017 Time steps

What 1s Dyna-Q* ?

« Uses an “exploration bonus :

— Keeps track of time since each state-action pair was
tried for real

— An extra reward 1s added for transitions caused by
state-action pairs related to how long ago they were
tried: the longer unvisited, the more reward for visiting

r 4+ KN

— The agent actually “plans” how to visit long unvisited
states

31/03/2017 32

