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Plan	for	Lecture:	Policies	and	Plans	
•  Policy	Op5miza5on	

–  Policies	can	be	op5mized	directly,	without	learning	value	
func5ons	

–  Policy-gradient	methods	

–  Special	case:	how	could	we	learn	with	real-valued	
(con5nuous)	ac5ons	

•  Planning	
–  Uses	of	“environment	models”	
–  Integra5on	of	planning,	learning,	and	execu5on	
–  “Model-based	reinforcement	learning”	
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Policy-gradient	methods	
(Note:	slightly	different	nota5on	in	this	sec5on,	

following	2nd	ed.	of	S+B)	



Approaches	to	control	

1.  Previous	approach:	Ac5on-value	methods:		

–  learn	the	value	of	each	(state-)ac5on;		

–  pick	the	max,	usually	

2.  New	approach:	Policy-gradient	methods:		

–  learn	the	parameters	of	a	stochas5c	policy	

–  update	by	gradient	ascent	in	performance																							

–  includes	actor-cri5c	methods,	which	learn	both	value	
and	policy	parameters	
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Actor-cri5c	architecture	

World
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Why	Approximate	Policies	rather	than	
Values?	

•  In	many	problems,	the	policy	is	simpler	to		
approximate	than	the	value	func5on	

•  In	many	problems,	the	op5mal	policy	is	stochas5c	

–  e.g.,	bluffing,	POMDPs	

•  To	enable	smoother	change	in	policies	

•  To	avoid	a	search	on	every	step	(the	max)	

•  To	be^er	relate	to	biology	
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Policy	Approxima5on	

•  Policy	=	a	func5on	from	state	to	ac5on	

–  How	does	the	agent	select	ac5ons?	

–  In	such	a	way	that	it	can	be	affected	by	learning?	

–  In	such	a	way	as	to	assure	explora5on?	

•  	Approxima5on:	there	are	too	many	states	and/or	
ac5ons	to	represent	all	policies	

–  To	handle	large/con5nuous	ac5on	spaces	
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Gradient	Bandit	Algorithm	
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Core	Principle:	Policy	Gradient	Methods	

•  Parameterized	policy	selects	ac5ons	without	consul5ng	a	
value	func5on	

•  VF	can	s5ll	be	used	to	learn	the	policy	weights	
–  But	not	needed	for	ac5on	selec5on	

•  Gradient	ascent	on	a	performance	measure	η(θ)	with	respect	
to	policy	weights	
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✓t+1 = ✓t + ↵ \r⌘(✓t)

Expectation approximates 
the gradient (hence “policy gradient”) 



Linear-exponen5al	policies		
(discrete	ac5ons)	
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Factor to modulate 
TD update, going 
beyond TD(0) to 
TD(λ) 
 



eg,	linear-gaussian	policies	
(con5nuous	ac5ons)	

action 

Action 
prob. 
density 

𝜇 and 𝜎 linear 
in the state 
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eg,	linear-gaussian	policies	
(con5nuous	ac5ons)	
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Gaussian	eligibility	func5ons	
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Policy	Gradient	Setup	
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REINFORCE:	Monte-Carlo	Policy	Gradient,	
from	Policy	Gradient	Theorem	
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The	generality	of	the		
policy-gradient	strategy	

•  Can	be	applied	whenever	we	can	compute	the	effect	of	
parameter	changes	on	the	ac5on	probabili5es,		

	e.g.,	has	been	applied	to	spiking	neuron	models	

•  There	are	many	possibili5es	other	than	linear-exponen5al	
and	linear-gaussian	

–  e.g.,	mixture	of	random,	argmax,	and	fixed-width	
gaussian;	learn	the	mixing	weights,	drij/diffusion	models	
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Planning	



Paths	to	a	Policy	
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Schematic
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Models

•  Model: anything the agent can use to predict how the 
environment will respond to its actions

•  Distribution model: description of all possibilities and their 
probabilities
–  e.g., 

•  Sample model: produces sample experiences
–  e.g., a simulation model

•  Both types of models can be used to produce simulated 
experience

•  Often sample models are much easier to come by

Ps ʹ s 
a  and Rs ʹ s 

a  for all s,  ʹ s ,  and a ∈A(s)
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Planning

valuesbackupsmodel simulated
experience policy

planningmodel policy

•  Planning: any computational process that uses a model to 
create or improve a policy

•  Planning in AI:
–  state-space planning
–  plan-space planning (e.g., partial-order planner)

•  We take the following (unusual) view:
–  all state-space planning methods involve computing 

value functions, either explicitly or implicitly
–  they all apply backups to simulated experience
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Planning Cont.

Random-Sample One-Step Tabular Q-Planning

•  Classical DP methods are state-space planning methods
•  Heuristic search methods are state-space planning methods
•  A planning method based on Q-learning:
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Paths	to	a	Policy:	Dyna	

31/03/2017	 23	



Learning, Planning, and Acting

planning

value/policy

experiencemodel

model
learning

acting

direct
RL

•  Two uses of real experience:
–  model learning: to 

improve the model
–  direct RL: to directly 

improve the value 
function and policy

•  Improving value function 
and/or policy via a model is 
sometimes called indirect 
RL or model-based RL. 
Here, we call it planning.
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Direct vs. Indirect RL

•  Indirect methods:
–  make fuller use of 

experience: get better 
policy with fewer 
environment interactions

•  Direct methods
–  simpler
–  not affected by bad 

models

But they are very closely related and can be usefully combined:
planning, acting, model learning, and direct RL can occur simultaneously 
and in parallel
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The Dyna Architecture (Sutton 1990)

real

direct RL
update

Model

planning update

search
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Policy/value functions

experience
model

learning

Environment

simulated
experience

31/03/2017	 26	



The Dyna-Q Algorithm

model learning

planning

direct RL
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Dyna-Q on a Simple Maze

rewards = 0 until goal, when =1
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Dyna-Q Snapshots: �
Midway in 2nd Episode

S

G

S

G
WITHOUT PLANNING (N=0) WITH PLANNING (N=50)
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When the Model is Wrong:�
 Blocking Maze

Cumulative
reward
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31/03/2017	



31

Shortcut Maze

Cumulative
reward

S

G G

S

0 3000 6000
Time steps

400

0

Dyna-Q+
Dyna-Q

Dyna-AC

The changed environment is easier
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What is Dyna-Q+ ?

•  Uses an “exploration bonus”:
–  Keeps track of time since each state-action pair was 

tried for real
–  An extra reward is added for transitions caused by 

state-action pairs related to how long ago they were 
tried: the longer unvisited, the more reward for visiting

–  The agent actually “plans” how to visit long unvisited 
states
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