
Reinforcement	Learning
	

Policy	Op4miza4on	and	Planning	
(Material	not	examinable)	

Subramanian	Ramamoorthy	
School	of	Informa4cs	

	
31	March,	2017	

Plan	for	Lecture:	Policies	and	Plans	
•  Policy	Op5miza5on	

–  Policies	can	be	op5mized	directly,	without	learning	value	
func5ons	

–  Policy-gradient	methods	

–  Special	case:	how	could	we	learn	with	real-valued	
(con5nuous)	ac5ons	

•  Planning	
–  Uses	of	“environment	models”	
–  Integra5on	of	planning,	learning,	and	execu5on	
–  “Model-based	reinforcement	learning”	

31/03/2017	 2	

Policy-gradient	methods	
(Note:	slightly	different	nota5on	in	this	sec5on,	

following	2nd	ed.	of	S+B)	

Approaches	to	control	

1.  Previous	approach:	Ac5on-value	methods:		

–  learn	the	value	of	each	(state-)ac5on;		

–  pick	the	max,	usually	

2.  New	approach:	Policy-gradient	methods:		

–  learn	the	parameters	of	a	stochas5c	policy	

–  update	by	gradient	ascent	in	performance																							

–  includes	actor-cri5c	methods,	which	learn	both	value	
and	policy	parameters	

31/03/2017	 4	

Actor-cri5c	architecture	

World
31/03/2017	 5	

Why	Approximate	Policies	rather	than	
Values?	

•  In	many	problems,	the	policy	is	simpler	to		
approximate	than	the	value	func5on	

•  In	many	problems,	the	op5mal	policy	is	stochas5c	

–  e.g.,	bluffing,	POMDPs	

•  To	enable	smoother	change	in	policies	

•  To	avoid	a	search	on	every	step	(the	max)	

•  To	be^er	relate	to	biology	

31/03/2017	 6	

Policy	Approxima5on	

•  Policy	=	a	func5on	from	state	to	ac5on	

–  How	does	the	agent	select	ac5ons?	

–  In	such	a	way	that	it	can	be	affected	by	learning?	

–  In	such	a	way	as	to	assure	explora5on?	

•  	Approxima5on:	there	are	too	many	states	and/or	
ac5ons	to	represent	all	policies	

–  To	handle	large/con5nuous	ac5on	spaces	

31/03/2017	 7	

Gradient	Bandit	Algorithm	

31/03/2017	 8	

Core	Principle:	Policy	Gradient	Methods	

•  Parameterized	policy	selects	ac5ons	without	consul5ng	a	
value	func5on	

•  VF	can	s5ll	be	used	to	learn	the	policy	weights	
–  But	not	needed	for	ac5on	selec5on	

•  Gradient	ascent	on	a	performance	measure	η(θ)	with	respect	
to	policy	weights	

31/03/2017	 9	

✓t+1 = ✓t + ↵ \r⌘(✓t)

Expectation approximates
the gradient (hence “policy gradient”)

Linear-exponen5al	policies		
(discrete	ac5ons)	

31/03/2017	 10	

Factor to modulate
TD update, going
beyond TD(0) to
TD(λ)

eg,	linear-gaussian	policies	
(con5nuous	ac5ons)	

action

Action
prob.
density

𝜇 and 𝜎 linear
in the state

31/03/2017	 11	

eg,	linear-gaussian	policies	
(con5nuous	ac5ons)	

31/03/2017	 12	

Gaussian	eligibility	func5ons	

31/03/2017	 13	

Policy	Gradient	Setup	

31/03/2017	 14	

REINFORCE:	Monte-Carlo	Policy	Gradient,	
from	Policy	Gradient	Theorem	

31/03/2017	 15	

The	generality	of	the		
policy-gradient	strategy	

•  Can	be	applied	whenever	we	can	compute	the	effect	of	
parameter	changes	on	the	ac5on	probabili5es,		

	e.g.,	has	been	applied	to	spiking	neuron	models	

•  There	are	many	possibili5es	other	than	linear-exponen5al	
and	linear-gaussian	

–  e.g.,	mixture	of	random,	argmax,	and	fixed-width	
gaussian;	learn	the	mixing	weights,	drij/diffusion	models	

31/03/2017	 16	

Planning	

Paths	to	a	Policy	

31/03/2017	 18	

Schematic

31/03/2017	 19	

Models

•  Model: anything the agent can use to predict how the
environment will respond to its actions

•  Distribution model: description of all possibilities and their
probabilities
–  e.g.,

•  Sample model: produces sample experiences
–  e.g., a simulation model

•  Both types of models can be used to produce simulated
experience

•  Often sample models are much easier to come by

Ps ʹ s
a and Rs ʹ s

a for all s, ʹ s , and a ∈A(s)

31/03/2017	 20	

Planning

valuesbackupsmodel simulated
experience policy

planningmodel policy

•  Planning: any computational process that uses a model to
create or improve a policy

•  Planning in AI:
–  state-space planning
–  plan-space planning (e.g., partial-order planner)

•  We take the following (unusual) view:
–  all state-space planning methods involve computing

value functions, either explicitly or implicitly
–  they all apply backups to simulated experience

31/03/2017	 21	

22

Planning Cont.

Random-Sample One-Step Tabular Q-Planning

•  Classical DP methods are state-space planning methods
•  Heuristic search methods are state-space planning methods
•  A planning method based on Q-learning:

31/03/2017	

Paths	to	a	Policy:	Dyna	

31/03/2017	 23	

Learning, Planning, and Acting

planning

value/policy

experiencemodel

model
learning

acting

direct
RL

•  Two uses of real experience:
–  model learning: to

improve the model
–  direct RL: to directly

improve the value
function and policy

•  Improving value function
and/or policy via a model is
sometimes called indirect
RL or model-based RL.
Here, we call it planning.

24	

Direct vs. Indirect RL

•  Indirect methods:
–  make fuller use of

experience: get better
policy with fewer
environment interactions

•  Direct methods
–  simpler
–  not affected by bad

models

But they are very closely related and can be usefully combined:
planning, acting, model learning, and direct RL can occur simultaneously
and in parallel

31/03/2017	 25	

The Dyna Architecture (Sutton 1990)

real

direct RL
update

Model

planning update

search
control

Policy/value functions

experience
model

learning

Environment

simulated
experience

31/03/2017	 26	

The Dyna-Q Algorithm

model learning

planning

direct RL

31/03/2017	 27	

Dyna-Q on a Simple Maze

rewards = 0 until goal, when =1

31/03/2017	 28	

Dyna-Q Snapshots: �
Midway in 2nd Episode

S

G

S

G
WITHOUT PLANNING (N=0) WITH PLANNING (N=50)

31/03/2017	 29	

30

When the Model is Wrong:�
 Blocking Maze

Cumulative
reward

0 1000 2000 3000

Time steps

150

0

Dyna-Q+
Dyna-Q

Dyna-AC

S

G G

S

The changed envirnoment is harder

31/03/2017	

31

Shortcut Maze

Cumulative
reward

S

G G

S

0 3000 6000
Time steps

400

0

Dyna-Q+
Dyna-Q

Dyna-AC

The changed environment is easier

31/03/2017	

What is Dyna-Q+ ?

•  Uses an “exploration bonus”:
–  Keeps track of time since each state-action pair was

tried for real
–  An extra reward is added for transitions caused by

state-action pairs related to how long ago they were
tried: the longer unvisited, the more reward for visiting

–  The agent actually “plans” how to visit long unvisited
states

31/03/2017	 32	

