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Agents often face Strategic Adversaries

Key issue we seek to model: Misaligned/conflicting interest
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On Self-Interest

What does it mean to say that agents are self-interested?

It does not necessarily mean that they want to cause harm to
each other, or even that they care only about themselves.

Instead, it means that each agent has his own description of
which states of the world he likes—which can include good
things happening to other agents

—and that he acts in an attempt to bring about these states
of the world (better term: inter-dependent decision making)



A Simple Model of a Game

 Two decision makers
— Robot (has an action space: a)
— Adversary (has an action space: 0)

* Cost or payoff (to use the term common in game theory)
depends on actions of both decision makers:

R(a, 0) — denote as a matrix corresponding to product space
e
[ [—1] 0

4 =12 =2
1] 1

b

This is the normal form — simultaneous choice over moves
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Representing Payoffs

In a general, bi-matrix, normal form game (n, Ay .. R1.. )

R, =

a1

The combined actions (a,, a,, ..
action profile a € A
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Example: Rock-Paper-Scissors

* Famous children’s game
 Two players; Each player simultaneously picks an action which
is evaluated as follows,

— Rock beats Scissors
— Scissors beats Paper
— Paper beats Rock

R P S R P
2 0 —1 1 P 0o 1 -1
Ri= P 1 0 -1 Ry,= P -1 0 1
S —1 1 0 S 1 —1 0
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TCP Game

Imagine there are only two internet users: you and me

Internet traffic is governed by TCP protocol, one feature of
which is the backoff mechanism: when network is congested
then backoff and reduce transmission rates for a while

Imagine that there are two implementations: C (correct, does
what is intended) and D (defective)

If you both adopt C, packet delay is 1 ms; if you both adopt D,
packet delay is 3 ms

If one adopts C but other adopts D then D user gets no delay
and C user suffers 4 ms delay



TCP Game in Normal Form

(- |}

1, -1

0, —4

Note that this is another way of writing a bi-matrix game:
First number represents payoff of row player and second
number is payoff for column player

28/03/2017



Some Famous Matrix Examples
- What are they Capturing?

* Prisoner’s Dilemma: Cooperate or Defect (same as TCP game)

C D C D

C /3 0 C /3 4
Rl_D(41> Rz_D(()l)

e Bach or Stravinsky (von Neumann called it Battle of the Sexes)
B S B S

B /2 0 B /1 0
Rl_s(o1> R2_8(0 2)

* Matching Pennies: Try to get the same outcome, Heads/Tails
H T H T

H 1 -1 H (-1 1
Rl:T(—1 1) Rz:T(1—1>
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Different Categorization: Common Payoff

A common-payoff game is a game in which for all action
profilesa € A, x- - -x A_and any pair of agents i, j, it is the

case that u,(a) = u(a)

Left

Right
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Left

Right

1,1

0,0

0,0

1,1

Pure coordination:
e.g., driving on a side of the road

10



Different Categorization: Constant Sum

A two-player normal-form game is constant-sum if there
exists a constant c such that for each strategy profilea € A, x
A, it is the case that u,(a) + u,(a) = c

Heads Tails

Pure competition:
One player wants to coordinate
Other player does not!

Tails —1.1 1. —1
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Defining the “action space”

What can players do?
- Pure strategies (a;): select an action.

- Mixed strategies (0;): select an action according
to some probability distribution.
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Strategies
Notation.

- o Is ajoint strategy for all players.

R,;(O) - Z O'((L)RZ'((L) Expected utility
ac A

- o_; Is ajoint strategy for all players except i.

- (0;,0_;) Is The joint sfrategy where i uses sfrategy o;
and everyone else o_;.
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Solution Concepts

Many ways of describing what one ought to do:
— Dominance

— Minimax

— Pareto Efficiency

— Nash Equilibria

— Correlated Equilibria

Remember that in the end game theory aspires to predict
behaviour given specification of the game.

Normatively, a solution concept is a rationale for behaviour
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Concept: Dominance

e AN action is strictly dominated if another action is
always better, i.e,

Ja; € A;Va_; € A_; Ri((aj,a—;)) > Ri({a;, a_y)).

e Consider prisoner’s dilemma.
C D

C 3 0 C
Rl:D(4 1) RFD(

- For both players, D dominatfes C.

o w O)

D
A
1
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Concept: Iterated Dominance

e Actions may be dominated by mixed sfrafegies.
D E D E

A 11 A 4 0
Ry= B 4 0 Ry = B 1 2
C 0 4 C 0 1

e If strictly dominated actions should not be played. ..
D E g

A/ﬂ1\ /

7\ AL ) \
R, — R, — [ |
c \p 4 C 1)

e This game is said fo be dominance solvable.

0 B
N P
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Concept: Minimax

e Consider matching pennies.
H T H T

H 1 -1 H /-1 1
Rl:T(—1 1) RQ:T( 1—1>

e Q: What do we do when the world is out fo get us?
A: Make sure it can’t.

e Play sfrategy with the best worst-case outcome.

argmax min R;({(o;,0_;))
o €A(A;) *—i€A—i

e Minimax optimal strategy.
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Minimax

e Back to mafching pennies.
H T

ne () ()

e Consider Bach or Stravinsky.
B S

B /20 1/3°\ .
Rl—s(o 1> (2/3)‘01
e Minimax optfimal guarantees the saftey value.

e Minimax opfimal never plays dominated strategies.
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Computing Minimax: Linear Programming

e Minimax optimal strategies via linear programming.

argmax min  R;((0;,0_;))
o, €A(A;) a_;eA_;
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Pick-a-Hand

There are two players: chooser (player I) & hider (player Il)

The hider has two gold coins in his back pocket. At the
beginning of a turn, he puts his hands behind his back and
either takes out one coin and holds it in his left hand, or takes
out both and holds them in his right hand.

The chooser picks a hand and wins any coins the hider has
hidden there.

She may get nothing (if the hand is empty), or she might win
one coin, or two.



hider
L1 R2
1 0
0 2

oo Bl w)

chooser

Pick-a-Hand, Normal Form:

* Hider could minimize losses ¢ Similarly, chooser might try
by placing 1 coin in left to maximise gain, picking R
hand, mosthe canloseis1l  « However, if hider

* If chooser can figure out strategizes, chooser ends up
hider’s plan, he will surely with zero
lose that 1 * So, chooser can’t actually

e If hider thinks chooser guarantee winning anything

might strategise, he has
incentive to play R2, ...

e All hider can guarantee is
max loss of 1 coin



Pick-a-Hand, with Mixed Strategies

Suppose that chooser
decides to choose R with
probability p and L with
probability 1 - p

If hider were to play pure
strategy R2 his expected
loss would be 2p

If he were to play L1,
expected lossis1-p

Chooser maximizes her
gains by choosing p so as to
maximize min{2p, 1 - p}

Chooser 1 /
Payoff , 2p

* Thus, by choosing R with

probability 1/3 and L with
probability 2/3, chooser
assures expected payoff of
2/3, regardless of whether
hider knows her strategy



Mixed Strategy for the Hider

Hider will play R2 with some
probability g and L1 with
probability 1-q

* The payoff for chooser is 2q

if she picks R,and 1 -q if
she picks L

If she knows g, she will
choose the strategy
corresponding to the
maximum of the two
values.

If hider knows chooser’s
plan, he will choose g =1/3
to minimize this maximum,
guaranteeing that his
expected payout is 2/3
(because 2/3=2g=1-0q)
Chooser can assure
expected gain of 2/3, hider
can assure an expected loss
of no more than 2/3,
regardless of what either
knows of the other’s
strategy.



Safety Value as Incentive

* Clearly, without some extra incentive, it is not in hider’s
interest to play Pick-a-hand because he can only lose by

playing.
* Thus, we can imagine that chooser pays hider to entice him
into joining the game.

e 2/3isthe maximum amount that chooser should pay him in
order to gain his participation.

28/03/2017 24



Equilibrium as a

0.5+
player 1's
expected 04 -
utility
-0.54.
-1
e Y
b e e— < 1
player 1's 0.75 1 —-‘\‘0'2'5’ o5 &5
Pr(heads) 0 player 2's
Pr(heads)

The saddle point in Matching Pennies,
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Saddle Point

0.5 %
player 1's
expected e,
utility
—0.54
-1
g S =
. B 1
player 1's s 1 T 0.5 :
Pr(heads) 0 player 2's
Pr(heads)

with and without a plane at z = 0.
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Concept: Nash Equilibrium

e What acfion should we play if there are no
dominated actions?

e Optimal action depends on actions of other players.

e A bestresponse seft is the set of all strategies that are
optimal given the strategies of the other players.

BRi(o_;) ={o; | Vo; Ri((0i,0-5)) > Ri({0},0-5))}

1

e A Nash equilibrium is a joint sfrategy, where all
players are playing best responses to each other.

Vie{l...n} o, € BR;(0_;)

28/03/2017 26



Nash Equilibrium
e A Nash equilibrium is a joint strategy, where all
players are playing best responses o each other.

Vi € {1 . n} 0; € BRi(U_;:)

e SinCe each player is playing a best response, No
player can gain by unilaterally deviating.

e Dominance solvable games have obvious equilibria.
- Strictly dominafted actions are never best responses.

- Prisoner’s dilemma has a single Nash equilibrium.
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Nash Equilibrium - Example

e Consider the coordination game.

A B
A (T3] 0 A
Rl:B(o 1) RFB(

e Consider Bach or Stravinsky.

(

S
0 3
1= g 1) Ry = g

oy
[S_—
o
VRN
ol To
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Nash Equilibrium - Example

e Consider matching pennies.
T H T
H 1 -1 H /(-1 1
Rl:T(—1 1> RQ:T( 1—1)

- No pure strategy Nash equilibria. Mixed strategies?
- Corresponds to the minimax sfrategy.
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MDPs
- Single Agent
- Multiple State

Stochastic Games
- Multiple Agent
- Multiple State

Many well known techniques from reinforcement learning, e.g., value/policy
iteration can still be applied to solving these games
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Stochastic Games (SG)

Defined by twm S, A1, n,T, R n)
No. agents l

Set of states Transition dynamics

SXAxS —10,1] Reward function
of i agent
Set of actions
available to each agent SxA—R
A=A x Ay, x ... x A, R=Ri X Ry X..XR,

We wish to learn a stationary, possibly stochastic, policy: p : S — P"“(-Az')

Objective continues to be maximization of expected future reward
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A First Algorithm for SG Solution [Shapley]

1. Initialize V' arbitrarily.
2. Repeat.

(a) For each state. s € S. compute the matrix,

¥ VA — . '
Gs(V) = |gaca : 1 wes T(s,a,8)V(s)

(b) For each state. s € S, update V',
V(s) < Value [Gs(V)].

This classic algorithm (from 1953) is akin to Value lteration for MDPs.
- Max operator has been replaced by “Value”, which refers to equilibrium.
- 1.e., the matrix game is being solved at each state (step 2b)
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The Policy Iteration Algorithm for SGs

1. Initialize V' arbitrarily.
2. Repeat,
pi <« Solve; [Gs(V)]

V(s) — FE {Z Yire|so = s.p,-} :

Table 2: Algorithm: Pollatschek & Avi-Itzhak. The function G is the same as presented in Table 1.

This algorithm is akin to Policy Iteration for MDPs.

Each player selects equilibrium policy according to current value
function (using the same G matrix as in Shapley’s algorithm)

Value function is then updated based on rewards as per equil. policy
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Q-Learning for SGs

1. Initialize Q(s € S, a € A) arbitrarily. and set « to be the learning rate.
2. Repeat,

(a) From state s select action a; that solves the matrix game S, a)qaca |. with some exploration.
g cA

(b) Observing joint-action a, reward r, and next state s’

Q(s,a) — (1 - a)Q(s,a) + a(r +7V(s")),

where.

V(s) = Value ( [Q(s.a)aeA] ) :

Table 3: Algorithm: Minimax-Q and Nash-Q. The difference between the algorithms is in the Value function and
the @ values. Minimax-Q uses the linear programming solution for zeros-sum games and Nash-Q uses the quadratic
programming solution for general-sum games. Also. the ) values in Nash-Q are actually a vector of expected rewards.
one entry for each player.

* Q-learning version of Shapley’s algorithm (maintaining value over joint
actions)
« Algorithm converges to stochastic game’s equilibrium, even if other

player doesn’t, provided everyone executes all actions infinitely often.
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What do we do if we have no Model?
Fictitious Play [Robinson ‘51]

1. Initialize V arbitrarily, U;(s € S,a € A;) < 0.and C;(s € S,a € A;) — 0.

2. Repeat: for every state s. let joint action a = (ay, a2). such that a; = argmax,, . 4 % Then.
Ci(s,a;) «— Ci(s,a;)+1
Ui(s,a;) — U(s,a;)+ R;i(s,a)+~ (Z T(s,a, s')V(s’))
s'€S
V(s) < max Us(s, 1)

a1€A; C‘l(S, (1.1)

Table 5: Algorithm: Fictitious play for two-player. zero-sum stochastic games using a model.

« Assumes opponents play stationary strategies
« Maintains information about average value of each action
* Finds equilibria in zero-sum and some general sum games
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Summary: General Tactic for SGs

Matrix Game Temporal [ Stochastic
Solver Differencing —_— Game Solver
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Summary: Many Approaches

Matrix Game N Temporal | | Stochastic Game
Solver Differencing | Solver

MG + TD = Game Theory RL

LP TD(0) Shapley MiniMax-Q

LP TD(1) Pollatschek & Avi-Itzhak —

LP TD(N) Van der Wal[25] -
Nash TD(0) — Nash-Q

FP TD(0) Fictitious Play Opponent-Modeling / JALs
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LP: linear programming

FP: ficitious play

37



Optional Reference/Acknowledgements

Learning algorithms for stochastic games are from the paper:

M. Bowling, M. Veloso, An analysis of stochastic game theory for
multiagent reinforcement learning, CMU-CS-00-165, 2000.

Several slides are adapted from the following sources:

e Tutorial at IJCAI 2003 by Prof Peter Stone, University of Texas
* Y. Peres, Game Theory, Alive (Lecture Notes)

28/03/2017 38



