RL 17a: Deep RL

(certainly interesting, but not examinable)
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@ “The use of punishments and rewards can at best be a part of
the teaching process” (A. Turing)
Russell and Norvig: Al, Ch.21

@ “A microcosm for the entire Al problem”
Russell and Norvig: Al, Ch.20

@ We seek a single agent which can solve any human-level task
The essence of an intelligent agent
Reinforcement learning + deep learning = Al
David Silver, Google DeepMind



State classification by deep learning
Representation of sample trajectories
Deep network representation of the value function

Deep network representation of the policy

Deep network model of state transitions



Deep Auto-Encoder Neural Networks in RL
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Deep and Recurrent Architectures for Optimal Control

9 degrees of freedom
10 training terrains
10 test terrains

No x-y input to
controller

@ Policy gradient
@ Soft or hard rectified
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Deep O-learning is still Q-learning

@ Function approximation of theQ-function
Qs a;w) = Q(s; a)

e 0 =r+ymaxy Q(s',a;w)— Q(s, a;w)
@ Update by stochastic gradient descent
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DOL: Lessons from RL with function approximation

Countermeasures against divergence of Q(s; a; w)

@ Diversify data to reduce episodic correlation

@ Use lots of data, i.e. many quadruples (s, a, r,s’)

@ Use one networks for Q (s, a; wp) and another one
forQ (s, a'; wr)

@ Use information about the reward distribution

@ Normalisation to get robust gradients

Adapted from: Deep Reinforcement Learning by David Silver, Google DeepMind



Demystifying Deep Reinforcement Learning (T. Matiisen)
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Deep Q Network (Volodymyr Mnih ea. 2015)

Represent artificial agent by deep neural network: DON

Learn successful policies directly from high-dimensional sensory
inputs

End-to-end reinforcement learning
Tested classic Atari 2600 games
Reward: Game score

Achieve a level comparable to a professional human games
tester across a set of 49 games (about half of the games
better than human)

Unchanged metaparameters for all games



Algorithm for Deep Reinforcement Learning (T. Matiisen)

initialize replay memory D
initialize action-value function Q with random weights
observe initial state s
repeat
select an acticn a
with probability & select a random action
otherwise select a = argmaxs:-Q(s,a’)
carry cut acticn a
observe reward r and new state s’
store experience <s, a, r, s’> in replay memocry D

sample random transitions <ss, aa, rr, ss’> from replay memory D
calculate target for each minibatch transiticn

if ss’ is terminal state then tt = rr

otherwise tt = rr + ymax,.Q(ss’, aa’)
train the Q network using (tt - Q(ss, aa))? as loss

5 =35’
until terminated



Convolutional network for DON (Volodymyr Mnih ea. 2015)
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Space invaders: Visualising last hidden layer (Mnih ea 2015)

t-distributed stochastic neighbour embedding




Hyperparameter values (Volodymyr Mnih ea. 2015)

Hyperparameter Value Description
e 2 Number cf training cases over which each stochastic gradient descent (SGD) update
is computed.
replay memoary size 1000000 SGD updates are sampled from this number of most recent frames.
agent history length 4 The number of most recent frames experienced by the agent that are given as input to
the @ network
The frequency (measured in the number of parameter updates) with which the target
target network update frequency 10000 network is updated (this corresponds to the parameter C from Algorithm 1)
discount factor 0.99 Discount factor gamma used in the Q-learning update.
" ot 4 Repeat each acticn selected by the agent this many times. Using a value of 4 results
e ene in the agent seeing only every 4th input frame.
The number of actions selected by the agent between successive SGD updates.
update frequency 4 Using a value of 4 results in the agent selecting 4 actions between each pair of
successive updates.
learning rate 0.00025 The learning rate used by RMSProp.
gradient momeantum 0.85 Gradient momentum used by RMSProp.
squared gradient momentum 045 Squared gradient (denominator) momentum used by RMSProp
min squared gradient 0.01 Constant added to the squared gradient in the denominator of the RMSProp update.
initial exploration 1 value of £ in £-greedy exploration
final exploration 0.1 Final value of & in &-greedy exploration.
final exploration frame 1000000 :';‘\Iigumbef of frames over which the initial value of £ is linearly annealed to its final
. A uniform random policy is run for this number of frames before learning starts and the
replay start size 50000 E : .
resulting experience is used to populate the replay memory
Maximum number of “do nothing” actions to be performed by the agent at the start of
no-op max 30

an spisode.



Deep RL: Parallelisation

Gorila (GOogle Relnforcement Learning Architecture)
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(Arun Nair et al., 2015)
Many Learners send gradient information to a parameter server:
Shards update disjoint subsets of the parameters of the deep
network.



Policy Gradient for Continuous Actions

Model-Based RL: Deep transition model of the environment
Deep AC

POMDPs

IRL

Biological modelling

Robot control

Text based games (incl. language understadning)

Dropout for robust representation



Model-based Deep RL: Challenges (David Silver)

@ Errors in the transition model compound over the trajectory
@ By the end of a long trajectory, rewards can be totally wrong
@ Model-based RL has failed (so far) in Atari

@ Deep networks of value/policy can “plan” implicitly

°

Each layer of network performs arbitrary computational step
n-layer network can “lookahead” n steps

@ Are transition models required at all?



AlphaGo

@ Chess: =~ 30 possible moves, =~ 80 moves per game
@ Go: = 250 possible moves, ~ 150 moves per game
@ Approach

o Reduce depth by truncating search tree at state s and
replacing subtree below s by approximate value function v (s)
Reduce width of search tree by policy p(a,s)

Train using supervised learning to predict human player moves
Train policy network to optimise outcome by self-play

Train a value network to predict the winner

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree
search." Nature 529.7587 (2016): 484-489.



AlphaGo
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Silver, David, et al. "Mastering the game of Go with deep neural networks and tree
search." Nature 529.7587 (2016): 484-489.



Monte Carlo tree search in AlphaGo
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Silver, David, et al. "Mastering the game of Go with deep neural networks and tree
search." Nature 529.7587 (2016): 484-489.



@ Non-zero rewards only at win/loss states

@ During learning a fast policy (based on human data) is used
that plays to the end , the learned policy becomes later more
general

e Combination of SL and RL (policy + value) and MCTS

@ Neural networks of AlphaGo trained directly from gameplay
purely through general-purpose methods (without a
handcrafted evaluation function as in DeepBlue)

@ AlphaGo achieved a 99.8% winning rate against other Go
programs, and defeated the human European Go champion by
5 games to 0, and a human world champion 4-1 or 3-2 (t.b.d.
today!), a feat previously thought to be at least a decade away.

@ Achieving one of Al's “grand challenges”

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree
search." Nature 529.7587 (2016): 484-489.



