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RL

“The use of punishments and rewards can at best be a part of
the teaching process” (A. Turing)

Russell and Norvig: AI, Ch.21
“A microcosm for the entire AI problem”

Russell and Norvig: AI, Ch.20
We seek a single agent which can solve any human-level task
The essence of an intelligent agent
Reinforcement learning + deep learning = AI

David Silver, Google DeepMind
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Deep RL

State classification by deep learning
Representation of sample trajectories
Deep network representation of the value function
Deep network representation of the policy
Deep network model of state transitions
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Deep Auto-Encoder Neural Networks in RL

Sascha Lange and Martin Riedmiller, IJCNN 2010
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Deep and Recurrent Architectures for Optimal Control

9 degrees of freedom
10 training terrains
10 test terrains
No x-y input to
controller
Policy gradient
Soft or hard rectified
units
Equal number of
parameters in all
models

Sergey Levine, 2013
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Deep Q-learning is still Q-learning

Function approximation of theQ-function

Q(s; a; w) ≈ Q(s; a)

δ = r + γmaxa′ Q (s ′, a′; w)−Q (s, a; w)

Update by stochastic gradient descent

∆w = −η∂δ
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DQL: Lessons from RL with function approximation

Countermeasures against divergence of Q(s; a; w)

Diversify data to reduce episodic correlation
Use lots of data, i.e. many quadruples (s, a, r , s ′)
Use one networks for Q (s, a; w0) and another one
forQ (s ′, a′; w1)

Use information about the reward distribution
Normalisation to get robust gradients

Adapted from: Deep Reinforcement Learning by David Silver, Google DeepMind
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Demystifying Deep Reinforcement Learning (T. Matiisen)

Naive formulation of DQN vs. DQN in DeepMind
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Deep Q Network (Volodymyr Mnih ea. 2015)

Represent artificial agent by deep neural network: DQN
Learn successful policies directly from high-dimensional sensory
inputs
End-to-end reinforcement learning
Tested classic Atari 2600 games
Reward: Game score
Achieve a level comparable to a professional human games
tester across a set of 49 games (about half of the games
better than human)
Unchanged metaparameters for all games
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Algorithm for Deep Reinforcement Learning (T. Matiisen)
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Convolutional network for DQN (Volodymyr Mnih ea. 2015)



Space invaders: Visualising last hidden layer (Mnih ea 2015)
t-distributed stochastic neighbour embedding
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Hyperparameter values (Volodymyr Mnih ea. 2015)
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Deep RL: Parallelisation
Gorila (GOogle ReInforcement Learning Architecture)

(Arun Nair et al., 2015)
Many Learners send gradient information to a parameter server:
Shards update disjoint subsets of the parameters of the deep
network.

bonus lecutre in 2016 Michael Herrmann RL 17a



Further work

Policy Gradient for Continuous Actions
Model-Based RL: Deep transition model of the environment
Deep AC
POMDPs
IRL
Biological modelling
Robot control
Text based games (incl. language understadning)
Dropout for robust representation
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Model-based Deep RL: Challenges (David Silver)

Errors in the transition model compound over the trajectory
By the end of a long trajectory, rewards can be totally wrong
Model-based RL has failed (so far) in Atari
Deep networks of value/policy can “plan” implicitly
Each layer of network performs arbitrary computational step
n-layer network can “lookahead” n steps
Are transition models required at all?
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AlphaGo

Chess: ≈ 30 possible moves, ≈ 80 moves per game
Go: ≈ 250 possible moves, ≈ 150 moves per game
Approach

Reduce depth by truncating search tree at state s and
replacing subtree below s by approximate value function v (s)
Reduce width of search tree by policy p (a, s)
Train using supervised learning to predict human player moves
Train policy network to optimise outcome by self-play
Train a value network to predict the winner

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree
search." Nature 529.7587 (2016): 484-489.
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AlphaGo

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree
search." Nature 529.7587 (2016): 484-489.
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Monte Carlo tree search in AlphaGo

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree
search." Nature 529.7587 (2016): 484-489.
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Remarks

Non-zero rewards only at win/loss states
During learning a fast policy (based on human data) is used
that plays to the end , the learned policy becomes later more
general
Combination of SL and RL (policy + value) and MCTS
Neural networks of AlphaGo trained directly from gameplay
purely through general-purpose methods (without a
handcrafted evaluation function as in DeepBlue)
AlphaGo achieved a 99.8% winning rate against other Go
programs, and defeated the human European Go champion by
5 games to 0, and a human world champion 4-1 or 3-2 (t.b.d.
today!), a feat previously thought to be at least a decade away.
Achieving one of AI’s “grand challenges”

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree
search." Nature 529.7587 (2016): 484-489.
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