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Overview

MARL
Stateless games
Markov games
Decentralised RL
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Multi-Agent Reinforcement Learning

Multi-agent learning is about cooperation or competition: The
MDP model may not longer apply

if goals are compatible, some degree of coordination may be
required
if goals are opposed, an optimal solution may no longer exist

Problems: limited information (including on the presence of
other agents), complexity, non-stationarity
Applications: multi-robot systems, decentralised network
routing, distributed load-balancing, traffic, finance, psychology
and biology

Ann Nowé, Peter Vrancx, and Yann-Michaël de Hauwere (2012) Game theory and
multi-agent reinforcement learning. In: M. Wiering and M. van Otterlo (Eds.):
Reinforcement Learning, Springer.
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Example: Job Scheduling

M. Brugnoli, E. Heymann, M.A. Senar, Grid scheduling based on collaborative random

early detection strategies, in: 18th Euromicro Conference on Parallel, Distributed and

Network-Based Processing, 2010, pp. 35–42.
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MARL vs. distributed RL

Parallel reinforcement learning: agents learn a single objective
collaboratively, e.g.

MORL,
(hierarchically) divided state space
distributed exploration by RL swarm

Problem: some agents may have outdated values
Solution: Use max in the learning rule assuming outdated
values are smaller
This is essentially standard RL with non-standard exploration
MARL: individual goals and independent decision making
capabilities

Nash equilibrium: no agent can improve its reward when the
other agents retain a fixed policy
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Benefits and/or Challenges in MARL

Speed-up possible by parallelisation
Experience sharing between agents by communication, mutual
teaching or imitation learning
Scalability: insertion of new agents, robustness vs. failure of
some agents
Exponential complexity in the number of agents

sparse interactions
experience sharing

Exploration is as essential as ever, and/but may confuse other
agents

Busoniu, L., Babuska, R., & De Schutter, B. (2008)
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Stateless Games (“MAB for MA”)

Reward depends on joint actions: rk : A → R
Zero-sum games or (e.g.) the prisoner’s dilemma

a1 a2
a1 (5, 5) (0, 10)
a2 (10, 0) (1, 1)

(a2, a2) is a Nash equilibrium (which is not optimal)
Best response for agent k if
rk (a−k , ak) ≥ rk (a−k , bk) ∀b ∈ Ak or more generally
rk
(
π−k , π

∗
k

)
≥ rk (π−k , πk) ∀πk ∈ Πk

In a Nash equilibrium all agents play their best response
Stochastic policies can be optimal in MARL, e.g. “matching
pennies” a1 a2

a1 (1,−1) (−1, 1)
a2 (−1, 1) (1,−1)

best strategy is to choose any action with probability 1
2
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Example: Cooperation

Two agents, three actions each: avoid obstacle, but do not disrupt
the formation

Tie between L-L and R-R. Coordination necessary:

“social conventions”: Agent 1 determines first, agent 2
observes and follows
communication: agent arriving first tells the other agent
(again tie may occur)

Busoniu, L., Babuska, R., & De Schutter, B. (2008). A comprehensive survey of
multiagent reinforcement learning. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, 38(2), 156-172.
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Example: Competition

Agent 1 is heading for the goal (×) while avoiding capture by its
opponent, agent 2.

Agent 2 aims at preventing agent 1 from reaching the goal,
preferably by capturing it.

The agents can only move to the left or to the right.

Mini-max solution for agent one is to move left (or needs to find
out what agent 2 is going to do)

Busoniu, L., Babuska, R., & De Schutter, B. (2008)

15/03/2016 Michael Herrmann RL 17



Reinforcement Learning in Repeated Games

In MARL, agents do not have full access to the (stochastic)
pay-off matrix, i.e. the game is unknown
Actions of other agents are usually observable
Goal of learning

Nash equilibria
joint optimality
evolutionary stable strategies
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Linear Reward-Inaction (LR−I )

Adjust action probabilties according to r (t) ≥ 0

pi (t + 1) = pi (t) + ηr (t) (1− pi (t)) if a (t) = ai

pj (t + 1) = pj (t)− η

|A− 1|
r (t) pi (t) if a (t) 6= ai

pi probability of playing action ai , η ≤ 1
rmax

is a learning rate
Special case of REINFORCE (Williams, 1992)
Properties (Sastry et al., 1994)

All Nash equilibria are stationary points.
All strict Nash equilibria are asymptotically stable.
All stationary points that are not Nash equilibria are unstable.
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Markov Games

Markov Games are for MAS like MPDs for single agents
A Markov game is a tuple (n, S ,A1,...,n,R1,...,n,T ) where

n is the number of agents
S = {s1, ..., sN} are the states
Ak are the actions of agent k
Rk : S ×A1 × ...×An × S → R are the rewards for agent k
T : S ×A1 × ...×An × S → [0, 1] the action-dependent state
transition function.

Note that rewards and transitions depend on the other agents
Task: Every agents maximises

V π
k (s) = Eπ

[ ∞∑
t=0

γtRk (t + 1) |s (0) = s

]
where π = (π1, . . . , πn) are the policies of all agents

See M. L. Littman, 1994
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Markov Games: Value Iteration

Learning with state transitions
Combination of repeated games and MDPs
Agent k need to estimate Q (s, a) for joint actions
a = (a1, . . . , an), not only Q (s, ak)

Action ak by agent k is selected based on the observation of
a−k = (a1, . . . , ak−1, ak+1, . . . , an)

Stationary solutions may not exist: Mixed strategies, average
reward schemes
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MA Q-learning

t = 0
Qk (s, a) = 0 ∀s, a, k
repeat

for all agents k do

select action ak(t)

execute joint action a = (a1, ..., an)
observe new state s ′ and rewards rk
for all agents k do

Qk(s, a) = Qk(s, a) + η (Rk(s, a) + γVk(s ′)−Qk(s, a))

until Termination Condition
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How is the value Vk (s ′) determined in MA Q-learning?

Various options

Opponent modelling (Joint Action Learner by Claus & Boutilier, 1998)

count how often (s, a−k) is played by other agents in state s
calculate frequency

F (s, a−k) =
# (s, a−k)∑
a−`

# (s, a−`)

Vk (s) = maxak Q (s, ak) = maxak

∑
a−k

F (s, a−k)Q (s, a)

Assume other agents trying to minimise your return

Vk (s) = mina−k maxπk

∑
πkQ (s, a)

Assume other agent will follow an equilibrium strategy

Vk = Nashk (s,Q1, . . . ,Qn), i.e. return at a Nash equilibrium
converges for self-play learning (convergence is often a problem
in MAMG)
Nash equilibrium is not unique in general
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Markov Games: Policy Iteration

Interconnected Learning Automata for Markov Games
(MG-ILA) by Vrancx et al. (2008)
Policy stored by learning automata: For each agent and state
LA (s, k)

Update LAs by expected average reward
Algorithm converges to Nash equlibrium (if exists)
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Interconnected Learning Automata for MG (MG-ILA)

initialise rprev (s, k),tprev (s),aprev (s, k),t,rtot(k),ρk(s, a),τk(s, a)→ 0,∀s, k, a,s ← s (0)

loop
for all Agents k do
if s was visited before then
Calculate received reward and time passed since last visit to state s:

∆rk = rtot(k)− rprev (s, k), ∆t = t − tprev (s)
Update estimates for action aprev (s, k) taken on last visit to s:

ρk(s, aprev (s, k)) = ρk(s, aprev (s, k)) + ∆rk
τk(s, aprev (s, k)) = τk(s, aprev (s, k)) + ∆t

LA(s, k) uses LR−I update with a(t) = aprev (s, k) and av. reward
βk(t) = ρk(s, aprev(s, k))/τk(s, aprev (s, k)).

LA(s, k) selects action ak .
For current state store: tprev (s)← t, rprev (s, k)← rtot(k), aprev (s, k)← ak

Execute action a = (a1, ..., an), observe rewards rk and new state s ′

s ← s ′, rtot(k)← rtot(k) + rk , t ← t + 1
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Sparse interactions

Reduce the joint-action space
If there is no interaction, act indepedently
Learn at what states where coordination is necessary, e.g
Sparse Tabular Multiagent Q-learning (Guestrin et al., 2002).
Represent dependencies that are limited to a few agents, e.g.
Sparse Cooperative Q-learning. (Kok and Vlassis, 2004, 2006)
Similar to SCQ with learning of coordination graphs (Utile
Coordination by Kok et al. (2005)
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Coordinating Q (CQ) Learning, (De Hauwere et al, 2010)
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Discussion

MARL algorithms currently limited to simple problems
Relations to game theory, evolution theory
Main point: Uncertainty, learning
Problems: Uncertainty about actions or rewards, delayed
rewards, instabilities through careless exploration
DecPOMDP (Bernstein et al., 2002): Planning takes place in
an off-line phase, after which the plans are executed in an
on-line phase. This on-line phase is completely decentralized.
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Emotional MARL

Yu, C., Zhang, M., & Ren, F. (2013). Emotional Multiagent Reinforcement Learning
in Social Dilemmas. In PRIMA 2013: Principles and Practice of Multi-Agent Systems
(pp. 372-387). Springer Berlin Heidelberg.
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Conclusion

MARL depends on

cooperativity among agents (cooperation, competition)
degree of interaction (sparseness, bandwidth)
sources of reward (mutual, external, internal)
heterogenity

Intrinsic rewards become essential: How can the agents learn
to derive rewards?
More general approaches needed

15/03/2016 Michael Herrmann RL 17



Acknowledgements & References

Marco Wiering and Martijn van Otterlo (Eds.) Reinforcement
Learning: State-of-the-Art Springer 2012.

Busoniu, L., Babuska, R., & De Schutter, B. (2008). A
comprehensive survey of multiagent reinforcement learning.
Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, 38(2), 156-172.

See also:
See also: http://umichrl.pbworks.com/w/page/7597585/Myths of Reinforcement Learning

15/03/2016 Michael Herrmann RL 17



Quotations

Good and evil, reward and punishment, are the only motives to a
rational creature: these are the spur and reins whereby all mankind
are set on work, and guided.

Locke

The human organism is inherently active, and there is perhaps no place where
this is more evident than in little children. They pick things up, shake them,
smell them, taste them, throw them across the room, and keep asking, “What
is this?” They are unendingly curious, and they want to see the effects of their
actions. Children are intrinsically motivated to learn, to undertake challenges,
and to solve problems. Adults are also intrinsically motivated to do a variety of
things. They spend large amounts of time painting pictures, building furniture,
playing sports, whittling wood, climbing mountains, and doing countless other
things for which there are not obvious or appreciable external rewards. The
rewards are inherent in the activity, and even though there may be secondary
gains, the primary motivators are the spontaneous, internal experiences that
accompany the behavior.

Deci and Ryan, 1985 (cf. A. Barto, 2013)
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