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POMDPs: Points to remember

o Belief states are probability distributions over states

@ Even if computationally complex, POMDPs can be useful as a
modelling approach (consider simplification of the
implementation in a second stage)

@ POMDPs enable agents to deal with uncertainty efficiently

@ POMDPs are Markovian w.r.t. belief states

@ Beliefs tend to blur as consequence of the state dynamics, but
can refocus by incorporating observations via Bayes' rule.

@ Policy trees take all possible realisations of the sequence of
future observations into account, i.e. the choice of the current
action depends on the average over many futures.

@ This causes exponential complexity unless the time horizon is
truncated (standard) or approximations are used (e.g. QMDP,
AMPD, and sample-based methods).

e Often some states are fully observable and these may be the
states where decisions are critical (e.g. a robot turning when
observing a doorway)
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Simplifications of POMDPs

Often simiplifications and approximations are used:

@ PBVI: Point-based value iteration
a vectors

OMDPs

AMDPs: Augmented MPDs

*]
(*]
]
e Monte Carlo POMDPs (last time)
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Point Based Value lteration

@ Maintains a set of example beliefs

@ Only considers constraints that maximise value function for at
least one of the examples

@ Solve POMDP for finite set of
belief points

o Initialise linear segment for each
belief point and iterate

@ Occasionally add new belief points

o Add point after a fixed horizon

! : ! o Add points when improvements

bz bl b0 03 fall below a threshold

o Add points implied by belief
update if sufficiently different
from present set
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Point Based Value lteration

@ Solve POMDP for finite set of belief points

@ Can do point updates in
. polynomial time
frO’ L 2’ / o Modify belief update so
\ /f that one vector is
! maintained per point

B _ji - ‘\»\k*_._\i / | o Simplified by finite .
Do ~_ 7 T number of belief points
~/
i YA | . .
- - SN @ Does not require pruning!
b2 bl bo b3

e Only need to check for
redundant vectors

J. Pineau, G. Gordon, and S. Thrun, Point-based value iteration: An anytime algorithm for POMDPs.
International joint conference on artificial intelligence. Vol. 18. Lawrence Erlbaum Associates Ltd, 2003.
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Value iteration (7 = 1) for a vectors

Vi (b) = r;nea}‘(( b(s)z T \s a ZQ ols’, a ssoJth 1(ba (s’))))
seS s'eS oeQ
= max ( b(s)R (s, a)—l—Zb(s) ZT (s'ls, a) ZQ (o|s’,a) Veo1 (b3 (s’)))
seS seS s’es o€
= max( b(s)R (s, a) +Zmax2b(s) ZT (s'ls,a) Q2 (o|s’, a) ak (5’)>
A\ 0eQ seS s'es

= max Zb(s) R (s,a —i—ZZ (s'ls,a) Q2 (o]s, a) ai(blao) (s)

seS ocQs’'eS

Notes: t is the iteration index, the current state is s, the next state is s’. Q is the
likelihood of an observation, T is the transition probability due to an action, b = b(s)
is the current belief state, bg is the belief after the next action and observation. The
as are meant to provide a more compact representation.
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Algorithm POMDP(T) (based on a set of points x;)

T={0,....00}, U =10
for T{:( 1to T)jo
T =0
for all (L{; ak, .. .,ozfv) in T do
for all control actions u do
for all measurements z do
for j=1to N do
aj{u,z = ZII\LI Oéf-( P (Z‘Xf) P (Xi|uv XJ)
endfor
endfor
endfor
endfor
for all control actions u do
for all k =1 to |T| do
fori=1to N do
o = r(x,u) + 75, o0
endfor
add utoU and (U;f,...,ay) to T’
endfor
endfor
optional: prune T’
T="T"
endfor
return T
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Remarks on the algorithm

e Without pruning |T| increases exponentially with T

@ The algorithm describes the determination of the value
function. Value iteration, actual observations and actions are
not entering.

@ Further steps in algorithm

o Find value function on policy trees up to a given T

o Determine maximum over branches and perform first action

o Recalculate policy taking into account observations and
rewards

e Update observation model, transition model and reward model

@ Many variants exist.

01/03/2016 Michael Herrmann RL 14



Point-based Value lteration

@ Value functions for T = 30
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OMDPs

e OMDPs only consider state uncertainty in the first step
(in a sense, similar to Q-learning:)

o After that, the world is assumed to become fully observable.

Algorithm QMDP(b = (p1,...,pn))
V = MDP _ DiscreteValuelteration()
for all control actions u and states x; do
Q (i, u) = r (xi, 1) + X1 U (o) p (511 )
end for

return v’ =arg max, Z,Nzl piQ (xi, u)
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Augmented MDPs

@ Augmentation adds uncertainty component to state space,
e.g.,

b= ( g E‘ZX& ’)’ (x) ) with Hiy() = — / b (x) log b (x) dx

@ Planning is performed by MDP in augmented state space

@ Transition, observation and payoff models have to be learnt

N. Roy and S. Thrun, Coastal navigation with mobile robots. In NIPS 12, 1999.
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Coastal Navigation by AMDPs (museum environment)
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see: Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. MIT press.
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What is Missing in POMDPs?

@ POMDPs do not describe natural metrics in environment
e When driving, we know both global and local distances
@ POMDPs do not natively recognise differences between scales

e Uncertainty in control is entirely different from uncertainty in
routing

@ POMDPs conflate properties of the environment with
properties of the agent

o Roads and buildings behave differently from cars and
pedestrians: we need to generalise over them differently

@ POMDPs are defined in a global coordinate frame, often
discrete

o We may need many different representations in real problems
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