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POMDPs: Points to remember

Belief states are probability distributions over states
Even if computationally complex, POMDPs can be useful as a
modelling approach (consider simplification of the
implementation in a second stage)
POMDPs enable agents to deal with uncertainty efficiently
POMDPs are Markovian w.r.t. belief states
Beliefs tend to blur as consequence of the state dynamics, but
can refocus by incorporating observations via Bayes’ rule.
Policy trees take all possible realisations of the sequence of
future observations into account, i.e. the choice of the current
action depends on the average over many futures.
This causes exponential complexity unless the time horizon is
truncated (standard) or approximations are used (e.g. QMDP,
AMPD, and sample-based methods).
Often some states are fully observable and these may be the
states where decisions are critical (e.g. a robot turning when
observing a doorway)
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Simplifications of POMDPs

Often simiplifications and approximations are used:

PBVI: Point-based value iteration
α vectors
QMDPs
AMDPs: Augmented MPDs
Monte Carlo POMDPs (last time)
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Point Based Value Iteration

Maintains a set of example beliefs
Only considers constraints that maximise value function for at
least one of the examples

Solve POMDP for finite set of
belief points

Initialise linear segment for each
belief point and iterate

Occasionally add new belief points

Add point after a fixed horizon
Add points when improvements
fall below a threshold
Add points implied by belief
update if sufficiently different
from present set
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Point Based Value Iteration

Solve POMDP for finite set of belief points

Can do point updates in
polynomial time

Modify belief update so
that one vector is
maintained per point
Simplified by finite
number of belief points

Does not require pruning!

Only need to check for
redundant vectors

J. Pineau, G. Gordon, and S. Thrun, Point-based value iteration: An anytime algorithm for POMDPs.
International joint conference on artificial intelligence. Vol. 18. Lawrence Erlbaum Associates Ltd, 2003.
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Value iteration (γ = 1) for α vectors
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Notes: t is the iteration index, the current state is s, the next state is s′. Ω is the
likelihood of an observation, T is the transition probability due to an action, b = b (s)
is the current belief state, bo

a is the belief after the next action and observation. The
αs are meant to provide a more compact representation.
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Algorithm POMDP(T ) (based on a set of points xi)

Υ = {(0, . . . , 0)}, U = ∅
for τ = 1 to T do

Υ′ = ∅
for all

(
U ; αk

1 , . . . , α
k
N
)

in Υ do
for all control actions u do

for all measurements z do
for j = 1 to N do

αk
j,u,z =

∑N
i=1 α

k
i p (z |xi ) p (xi |u, xj )

endfor
endfor

endfor
endfor
for all control actions u do

for all k = 1 to |Υ| do
for i = 1 to N do

α′i = r (xi , u) + γ
∑

z α
k
i,u,z

endfor
add u to U and (U ;α′1, . . . , α

′
N) to Υ′

endfor
endfor

optional: prune Υ’
Υ=Υ’

endfor
return Υ
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Remarks on the algorithm

Without pruning |Υ| increases exponentially with T
The algorithm describes the determination of the value
function. Value iteration, actual observations and actions are
not entering.
Further steps in algorithm

Find value function on policy trees up to a given T
Determine maximum over branches and perform first action
Recalculate policy taking into account observations and
rewards
Update observation model, transition model and reward model

Many variants exist.
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Point-based Value Iteration

Value functions for T = 30

Exact value function PBVI
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QMDPs

QMDPs only consider state uncertainty in the first step
(in a sense, similar to Q-learning:)
After that, the world is assumed to become fully observable.

Algorithm QMDP(b = (p1, . . . , pN))
V̂ = MDP_DiscreteValueIteration()

for all control actions u and states xi do
Q (xi , u) = r (xi , u) +

∑N
j=1 V̂ (xj) p (xj |u, xi )

end for
return u′ =argmaxu

∑N
i=1 piQ (xi , u)
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Augmented MDPs

Augmentation adds uncertainty component to state space,
e.g.,

b̄ =

(
argmaxx b (x)

Hb (x)

)
with Hb(x) = −

∫
b (x) log b (x) dx

Planning is performed by MDP in augmented state space
Transition, observation and payoff models have to be learnt

N. Roy and S. Thrun, Coastal navigation with mobile robots. In NIPS 12, 1999.
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Coastal Navigation by AMDPs (museum environment)

see: Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. MIT press.
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What is Missing in POMDPs?

POMDPs do not describe natural metrics in environment

When driving, we know both global and local distances

POMDPs do not natively recognise differences between scales

Uncertainty in control is entirely different from uncertainty in
routing

POMDPs conflate properties of the environment with
properties of the agent

Roads and buildings behave differently from cars and
pedestrians: we need to generalise over them differently

POMDPs are defined in a global coordinate frame, often
discrete

We may need many different representations in real problems
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