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POMDPs: Points to remember

o Belief states are probability distributions over states

@ Even if computationally complex, POMDPs can be useful as a
modelling approach (consider simplification of the
implementation in a second stage)

@ POMDPs enable agents to deal with uncertainty efficiently

@ POMDPs are Markovian w.r.t. belief states

@ Beliefs tend to blur as consequence of the state dynamics, but
can refocus by incorporating observations via Bayes' rule.

@ Policy trees take all possible realisations of the sequence of
future observations into account, i.e. the choice of the current
action depends on the average over many futures.

@ This causes exponential complexity unless the time horizon is
truncated (standard) or approximations are used (e.g. QMDP,
AMPD, and sample-based methods).

e Often some states are fully observable and these may be the
states where decisions are critical (e.g. a robot turning when
observing a doorway)
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Belief propagation

b'(s") = P(s|o,a,b)
P (ols’, a, b) P (s'|a, b)
P(o|a, b)
P(ols’,a) > .cs P(s'la, b,s) P(s|a, b)
P (o|a, b)
Q(o0,5',a) > ccs T(s',a,5)b(s)
P (o|a, b)

o observation, a action, s state, b belief (distribution over states)
Q observation model, T state transition probability

Rewards on belief states: p(b,a) = >, .sb(s) R(s,a)
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Belief propagation

@ Bayesian belief propagation (given action a):

ey 01595 T | 5,2)5()
ZEGS Q(O ’ g? a) ZsES T(:§ ’ S, a)b(s)
where s are the previous states with distribution b, s’ the new

states with distribution b’, T the state transition probabilities,
and € the observation probabilities for the actual signals o.

@ In terms of spread of the belief (variance), usually T increases
uncertainty, Q reduces uncertainty.

@ In terms of the decidedness of the belief towards one state,
usually T is neutral, while the effect of ©Q depends on the
outcome of the observation.
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Value function

o Given the current belief b and the next belief b' we can
compute a new iteration of the value function V) from the
current estimate V). Formally, we have for each action a

V2., (b) = r (b, a)+’y/Vk (&) p (]a, b) db

which practically is for discrete states

V2., (b)=r(b,a)+~ Z Vi (V') b (s']a, b) ds’

o Instead of V'?(b) we could write Q (b, a)
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A simple POMDP Algorithm (T = 1)

Set time t and initial belief b+ t

@ Choose action a; = argmax, V2 (b;)

@ Execute action a; and increment t — t+ 1

© Read new observation 0,41 and reward r

© Propagate by to by1 (using a; and o41)

O Calculate V7 ; (b;) for all a (using V{7 (bt11), ar , 0r41 and r)

Notes: Because b is high-dimensional, it is unlikely that we have a V{ (b¢+1)
that was recently updated, so we should calculate Vi1 for all b. Alternatively,
we can use a set of points in the belief space.

Pruning is possible, i.e removing V2. (b:) if dominated by other actions

01/03/2016 Michael Herrmann RL 14



Multi-step prediction

@ We do not have to interate thevalue function. We can use an
update with a small learning rate instead. Then the T =1

algorithm will integrate all possible futures into the value
function.

o If transition and obeservation probabilities are know and using
r(b,a) => csb(s)r(s,a), steps 4. and 5. can be
performed for all a and o a few (T) steps into the future
(exponentially complex, but pruning helps)

@ Value function over belief state is piecewise linear and convex

(Sondik, 1978)
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Repeated from last time: The Tiger problem
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Repeated from last time: The Tiger problem
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Value iteration

@ Given the current belief b and the next belief b’ (see previous
slide) we can compute a new iteration of the value function
Vj11 from the current estimate Vj. Formally, we have

Vies (6) = max (r(b.2)+ 7 [ Vi (6) p (12.5) 0¥

which practically is for discrete states

Vi1 (b) = max (r(b, a) + 'yz Vi (b) ' (s'|a, b) dsl>

S/

o Initialisation

V(b)=) b(s)r(s)

seS

@ Action choice is given by the argmax
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Recent and current research

@ Solution of Gridworld POMDPs (M. Hausknecht, 2000)
@ Point-based value iteration (J. Pineau, 2003)

@ Large problems: Heuristic Search Value Iteration (T. Smith &
R. Simmons, 2004): 12545 states, considering bounds for the
value function over belief states

@ Learning POMDPs from data (Learning a model of the
dynamics)

e compressed predictive state representation
o Bayes-adaptive POMDPs (tracking the dynamics of belief
states)

@ Policy search, hierarchical POMDPs, decentralised POMDPs,

Joelle Pineau (2013) A POMDP Tutorial. European Workshop on Reinforcement Learning.

01/03/2016 Michael Herrmann RL 14



Summary on POMDPs

@ POMDPs compute the optimal action in partially observable,
stochastic domains.

@ For finite horizon problems, the resulting value functions are
piece-wise linear and convex, but very complicated

@ A number of heuristic and stochastic approaches are available
to reduce the complexity.

o Combinations with other RL approaches possible

@ POMDPs have been applied successfully to realistic problem is
robotics
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What is Missing in POMDPs?

@ POMDPs do not describe natural metrics in environment
e When driving, we know both global and local distances
@ POMDPs do not natively recognise differences between scales

e Uncertainty in control is entirely different from uncertainty in
routing

@ POMDPs conflate properties of the environment with
properties of the agent

o Roads and buildings behave differently from cars and
pedestrians: we need to generalise over them differently

@ POMDPs are defined in a global coordinate frame, often
discrete

o We may need many different representations in real problems
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