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POMDPs: Points to remember

Belief states are probability distributions over states
Even if computationally complex, POMDPs can be useful as a
modelling approach (consider simplification of the
implementation in a second stage)
POMDPs enable agents to deal with uncertainty efficiently
POMDPs are Markovian w.r.t. belief states
Beliefs tend to blur as consequence of the state dynamics, but
can refocus by incorporating observations via Bayes’ rule.
Policy trees take all possible realisations of the sequence of
future observations into account, i.e. the choice of the current
action depends on the average over many futures.
This causes exponential complexity unless the time horizon is
truncated (standard) or approximations are used (e.g. QMDP,
AMPD, and sample-based methods).
Often some states are fully observable and these may be the
states where decisions are critical (e.g. a robot turning when
observing a doorway)
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Belief propagation

b′
(
s ′
)

= P
(
s ′|o, a, b

)
=

P (o|s ′, a, b)P (s ′|a, b)

P (o|a, b)

=
P (o|s ′, a)

∑
s∈S P (s ′|a, b, s)P (s|a, b)

P (o|a, b)

=
Ω (o, s ′, a)

∑
s∈S T (s ′, a, s) b (s)

P (o|a, b)

o observation, a action, s state, b belief (distribution over states)

Ω observation model, T state transition probability

Rewards on belief states: ρ (b, a) =
∑

s∈S b (s)R (s, a)
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Belief propagation

Bayesian belief propagation (given action a):

b′(s ′) =
Ω(o | s ′, a)

∑
s∈S T (s ′ | s, a)b(s)∑

s̃∈S Ω(o | s̃, a)
∑

s∈S T (s̃ | s, a)b(s)

where s are the previous states with distribution b, s ′ the new
states with distribution b′, T the state transition probabilities,
and Ω the observation probabilities for the actual signals o.
In terms of spread of the belief (variance), usually T increases
uncertainty, Ω reduces uncertainty.
In terms of the decidedness of the belief towards one state,
usually T is neutral, while the effect of Ω depends on the
outcome of the observation.
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Value function

Given the current belief b and the next belief b′ we can
compute a new iteration of the value function Vk+1 from the
current estimate Vk . Formally, we have for each action a

V a
k+1 (b) = r (b, a) + γ

∫
Vk
(
b′
)
p
(
b′|a, b

)
db′

which practically is for discrete states

V a
k+1 (b) = r (b, a) + γ

∑
s′

Vk
(
b′
)
b′
(
s ′|a, b

)
ds ′

Instead of V ‘a (b) we could write Q (b, a)
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A simple POMDP Algorithm (T = 1)

Set time t and initial belief b + t

1 Choose action at = argmaxa V a
t (bt)

2 Execute action at and increment t → t + 1
3 Read new observation ot+1 and reward r
4 Propagate bt to bt+1 (using at and ot+1)
5 Calculate V a

t+1 (bt) for all a (using V a
t (bt+1), at , ot+1 and r)

Notes: Because b is high-dimensional, it is unlikely that we have a V a
t (bt+1)

that was recently updated, so we should calculate Vt+1 for all b. Alternatively,
we can use a set of points in the belief space.

Pruning is possible, i.e removing V a
t+1 (bt) if dominated by other actions
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Multi-step prediction

We do not have to interate thevalue function. We can use an
update with a small learning rate instead. Then the T = 1
algorithm will integrate all possible futures into the value
function.
If transition and obeservation probabilities are know and using
r (b, a) =

∑
s∈S b (s) r (s, a), steps 4. and 5. can be

performed for all a and o a few (T ) steps into the future
(exponentially complex, but pruning helps)
Value function over belief state is piecewise linear and convex
(Sondik, 1978)
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Repeated from last time: The Tiger problem
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Repeated from last time: The Tiger problem
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Value iteration

Given the current belief b and the next belief b′ (see previous
slide) we can compute a new iteration of the value function
Vk+1 from the current estimate Vk . Formally, we have

Vk+1 (b) = max
a

(
r (b, a) + γ

∫
Vk
(
b′
)
p
(
b′|a, b

)
db′
)

which practically is for discrete states

Vk+1 (b) = max
a

(
r (b, a) + γ

∑
s′

Vk
(
b′
)
b′
(
s ′|a, b

)
ds ′
)

Initialisation
V (b) =

∑
s∈S

b (s) r (s)

Action choice is given by the argmax
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Recent and current research

Solution of Gridworld POMDPs (M. Hausknecht, 2000)
Point-based value iteration (J. Pineau, 2003)
Large problems: Heuristic Search Value Iteration (T. Smith &
R. Simmons, 2004): 12545 states, considering bounds for the
value function over belief states
Learning POMDPs from data (Learning a model of the
dynamics)

compressed predictive state representation
Bayes-adaptive POMDPs (tracking the dynamics of belief
states)

Policy search, hierarchical POMDPs, decentralised POMDPs,
...

Joelle Pineau (2013) A POMDP Tutorial. European Workshop on Reinforcement Learning.
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Summary on POMDPs

POMDPs compute the optimal action in partially observable,
stochastic domains.
For finite horizon problems, the resulting value functions are
piece-wise linear and convex, but very complicated
A number of heuristic and stochastic approaches are available
to reduce the complexity.
Combinations with other RL approaches possible
POMDPs have been applied successfully to realistic problem is
robotics
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What is Missing in POMDPs?

POMDPs do not describe natural metrics in environment

When driving, we know both global and local distances

POMDPs do not natively recognise differences between scales

Uncertainty in control is entirely different from uncertainty in
routing

POMDPs conflate properties of the environment with
properties of the agent

Roads and buildings behave differently from cars and
pedestrians: we need to generalise over them differently

POMDPs are defined in a global coordinate frame, often
discrete

We may need many different representations in real problems
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