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Today’s topics

Natural gradient
Compatible function approximation
Natural actor-critic (NAC)
Biases, stochastic approximation, test experiments
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Last time: Policy gradient

Average reward give a (parametric) policy:

ρQ,πω =
∑
x ,a

µπω (x)πω (a|x)Qπω (x , a)

In order to realise the policy gradient

ωt+1 = ωt + βt∇ωρω

we assume that the dependency of µ and Q on ω to be “weak”,
i.e. use a simplifying assumption for the dependency of µ and Q on
ω, namely

∇ωρ (ω) =
∑
x ,a

µπ (x) {∇ωπω (a|x)}Qπ (x , a)

Many versions of the algorithm possible (REINFORCE)
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Actor-Critic Algorithm

Algorithm (SARSA/Q):

Initialise x and ω, sample a ∼ πω (·|x)

Iterate:

obtain reward r , transition to new state x ′

new action a′ ∼ πω (·|x ′)
δ = r + γQθ (x ′, a′)−Qθ (x , a)
ω = ω + β∇ω log πω (a|x)Qθ (x , a)
θ = θ + αδ ∂Q∂θ
a← a′, x ← x ′

Until termination criterion
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Policy gradient

Actor-critic algorithms maintain two sets of parameters (θ, ω),
one (θ) for the representation of the value function and one
(ω) for the representation of the policy.
Policy gradient methods are realised via stochastic descent
using the current estimate of the value function.
Simultaneously, the estimate of the value function is gradually
improved.
It is a suggestive idea to harmonise the two aspects of the
optimisation process
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Recipe for Natural Actor-Critic

1 Given the current policy π we determine the score function Ψ.
2 Using π we also get a sample of rewards which we can use to

estimate the value function Q̂.
3 At the same time we estimate the probability µ̂ of the agent in

the state space.
4 From µ, π , Ψ, Q we can now find the optimal parameters θ

by solving a (linear) equation.
5 θ is used in order to update the parameters of the policy (β

learning rate).
ωt+1 = ωt + βtθt

This makes sense because we have seen that θ = F−1∇ωρ (ω)
which is a natural gradient on ρ.

What is a natural gradient?
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Natural gradient

The gradient is orthogonal to the level lines of the cost function.
For a circular problem it points towards the optimum, while, for
non-circular problem, we might be able to do better.

The natural gradient can be interpreted as a removal of the adverse
effects of the particular model: In the above example we could
simply “divide by the eigenvalues”, i.e. apply a linear transformation
with the inverse eigenvalues and appropriate eigenvectors.
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Gradient descent

Gradient decent
θt+1 = θt − η∇θf (θt)

Assume a affine (linear) transformation ϕ = W−1θ, so we have

ϕt+1 = ϕt − η
(
∂θ

∂ϕ

)
∇θf (θt) = ϕt − ηW>∇θf (θt)

Multiply by W

Wϕt+1 = Wϕt − ηWW>∇θf (θt)

θ
′
t+1 = θt − ηWW>∇θf (θt)

In general θ′t+1 6= θt+1 =⇒ Gradient is not affine invariant.

This is nothing to worry about: The gradient works reasonably well
with any positive definite matrix in front, but we can do better.
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Beyond gradient decent

Gradient decent is based on a first-order Taylor expansion

f (θ) ≈ f (θ0) +∇θf (θ0)> (θ − θ0)

Consider second-order Taylor expansion

f (θ) ≈ f (θ0) +∇θf (θ0) +
1
2

(θ − θ0)> H (θ0) (θ − θ0)

where the Hessian is given by Hij (θ0) = ∂2f
∂θiθj

(θ0). In this
approximation we can optimise f w.r.t. θ by

θ = θ0 − H−1 (θ0)∇θf (θ0)

This is left unchanged by a linear transform ϕ = W−1θ:
H (ϕ0) = W>H (θ0) W and ∇ϕ →W>∇θ:

ϕ = ϕ0 −
(
W>HW

)−1
W>∇θf (Wϕ0) = W−1H−1 (θ0)∇θf (Wϕ0)

θ = θ0 − H−1 (θ0)∇θf (θ) (after multiplication by W )

Second order method (Newton) is affine invariant.
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Reformulation of gradient descent

Gradient descent improves the current estimate, perfect for a linear
cost function in a specific coordinate system. Is it the best we can
do (ignoring the 2nd order correction by the Hesse matrix)?

Given step size η, we find

θ∗ = arg max
θ: ‖θ−θ0‖≤η

f (θ) ≈ arg max
θ: ‖θ−θ0‖≤η

f (θ0) +∇θf (θ0) (θ − θ0)

= arg max
θ: ‖θ−θ0‖≤η

∇θf (θ0) (θ − θ0)

= θ0 + η
∇θf (θ0)

‖∇θf (θ0)‖

i.e. optimally (θ − θ0) has length η and is parallel to the unit
vector ∇θf

‖∇θf ‖ , where ‖·‖ is the Euclidean norm.
Can we use also other norms (or distance functions)?
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Kullback-Leibler divergence

Kullback-Leibler divergence

KL (πω1 (a|x) , πω2 (a|x)) =
∑
a,x

πω1 (a|x) log
πω1 (a|x)

πω2 (a|x)

Consider two similar policies πω (a|x) and πω+δω (a|x). Perform a
Taylor expansion of KL (πω (a|x) , πω+δω (a|x)):

Constant term: KL (πω (a|x) , πω (a|x)) = 0

Linear term: ∂
∂ωKL (πω (a|x) , πω (a|x)) = 0

Quadratic term is the Fisher information matrix.
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Fisher information

In other words, the Hessian for the Kullback-Leibler divergence is
the Fisher information matrix.

Fij (x ;ω) = Eπω(a|x)
[
∂ log πω (a|x)

∂ωi

∂ log πω (a|x)

∂ωj

]
Benefits

As a Hessian the Fisher matrix gives an affine invariant
descent.
The approximation of the down/uphill direction becomes
better for non-linear cost functions
Fisher information matrix is covariant (means: invariant
against appropriate parameter transformations).

Literature:

Natural gradient (S. Amari: Natural gradient works efficiently in learning,
NC 10, 251-276, 1998)
Examples by Bagnell and Schneider (2003) and Jan Peters (2003, 2008)
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Natural gradient

θ = F−1 (ω)∇ωρ (ω) is a natural gradient on

ρQ,π,µ =
∑
x ,a

µπω (x)Qπω (x , a)πω (a|x)

if we can assume the dependency of µ and Q on ω to be “weak”, i.e.

∇ωρ (ω) =
∑
x ,a

µπ (x)Qπ (x , a)∇ωπω (a|x)

We have seen that

F (ω) θ = ∇ωρ (ω)⇔ θ = F (ω)−1∇ωρ (ω) =: ∇̃ωρ (ω)

which defines the natural gradient. This implies the following
natural gradient learning rule (Kakade, 2001/2)

ωt+1 = ωt + βtθt

which is better and simpler than standard policy gradient.
Remember this result is obtained at the cost of the calculation of θ!
26/02/2016 Michael Herrmann RL 12



Pros and Cons of the Fisher information

+ “Natural” (covariant): uses the geometry of the goal function
rather than the geometry of the parameter space (Choice of
parameters used to be critical, but isn’t any more so).

+ Related to Kullback-Leibler divergence and to Hessian
+ Describes efficiency in statistical estimation (Cramer-Rao)
+ Many applications in machine learning, statistics and physics
− Depends usually on parameters and is computationally complex

(but not here where were we get it for free: We were lucky!)
− Requires sampling of high-dimensional probability distributions
+ May still work if some approximation is used, e.g. Gaussian
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Kakade’s Example

Three right curves: standard gradient, three left curves: natural
gradient

Policy π (a|x ;ω) ∼ exp
(
ω1s1x2 + ω2ssx

)
Starting conditions: ω1s1 = ω2s2 = −0.8
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Kakade’s Example

Left: average reward for the policy
π (a = 1|s;ω) ∼ exp (ω) / (1 + exp (ω))

Lower plot represents the beginning of the upper plot (different
scales!): dashed: natural gradient, solid: standard gradient.

Right: Movement in the parameter space (axes are actually ωi !)
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Examples of natural gradients

standard gradient (dashed)
natural gradient (solid)

Grondman et al. (2012) A survey of actor-critic reinforcement learning: Standard and
natural policy gradients. IEEE TA Systems, Man, and Cybernetics 42(6), 1291-1307.
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More examples

J. Kober & J. R. Peters: Policy search for motor primitives in
robotics. NIPS 2009, pp. 849-856.
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Summary

A promising approach for continuous action and state spaces
(in discrete time)
Policy gradient as direct maximisation of the averaged
state-action value
Natural policy gradient arises from the optimisation of the
value function
Model-free reinforcement learning

Acknowledgements: See lecture 12.

26/02/2016 Michael Herrmann RL 12


