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Today's topics

Natural gradient
Compatible function approximation
Natural actor-critic (NAC)

Biases, stochastic approximation, test experiments



Last time: Policy gradient

Average reward give a (parametric) policy:
por. = S (9 o) €7 (9

In order to realise the policy gradient
w1 = wt + BtV pw

we assume that the dependency of 11 and Q on w to be “weak”,
i.e. use a simplifying assumption for the dependency of 1 and Q on
w, namely

Vop (w) = ZM ) {Vumy (alx)} Q7 (x, a)

Many versions of the algorithm possible (REINFORCE)



Actor-Critic Algorithm

Algorithm (SARSA/Q):

e Initialise x and w, sample a ~ 7, (+|x)

o lterate:
e obtain reward r, transition to new state x’
e new action a’ ~ m, (+|x’)
e d=r++vQp(x',a") — Qy(x,a)
o w=w+ BV, logm, (alx) Oy (x, a)
_ [219)
0o a+a, x«x

@ Until termination criterion



Policy gradient

@ Actor-critic algorithms maintain two sets of parameters (6, w),
one (0) for the representation of the value function and one
(w) for the representation of the policy.

@ Policy gradient methods are realised via stochastic descent
using the current estimate of the value function.

@ Simultaneously, the estimate of the value function is gradually
improved.

@ It is a suggestive idea to harmonise the two aspects of the
optimisation process



Recipe for Natural Actor-Critic

© Given the current policy m we determine the score function V.

@ Using 7 we also get a sample of rewards which we can use to

A

estimate the value function Q.

© At the same time we estimate the probability /i of the agent in
the state space.

@ From p, m, V¥, Q we can now find the optimal parameters 6
by solving a (linear) equation.

@ 0 is used in order to update the parameters of the policy (8
learning rate).

W1 = wr + B0

This makes sense because we have seen that § = F 1V, p (w)
which is a natural gradient on p.

What is a natural gradient?



Natural gradient

The gradient is orthogonal to the level lines of the cost function.
For a circular problem it points towards the optimum, while, for
non-circular problem, we might be able to do better.

The natural gradient can be interpreted as a removal of the adverse
effects of the particular model: In the above example we could
simply “divide by the eigenvalues”, i.e. apply a linear transformation
with the inverse eigenvalues and appropriate eigenvectors.



Gradient descent

Gradient decent
9t+1 =0; — 77V(9’r (Ht)

Assume a affine (linear) transformation ¢ = W16, so we have

00

P41 = Qr — 1 (%) Vof (0:) = or —nW  Vyf ()

Multiply by W

Wpirr = Wee — nWWTVQf(Ht)

Orr = 0 —nWW T Vof (0;)

In general 6, ; # 0:y1 = Gradient is not affine invariant.

This is nothing to worry about: The gradient works reasonably well
with any positive definite matrix in front, but we can do better.



Beyond gradient decent

Gradient decent is based on a first-order Taylor expansion
f(0) ~ f (60) + Vof (60) " (8 — 6o)

Consider second-order Taylor expansion
1
f (6) = £ (60) + Vof (60) + 5 (0 — 60) " H (6) (¢ — bo)

where the Hessian is given by Hjj (60) = 80 9 (6o). In this
approximation we can optimise f w.r.t. 0 by

0 =0y — H™! (90) Vof (90)
This is left unchanged by a linear transform ¢ = W—16:
H (o) = WTH (o) W and V., — WTVy:
-1
¢ = o~ (WTHW) “WTVof (Wo) = WLH (60) Vof (Weco)
0 = 0y — H 1 (60) Vof (9) (after multiplication by W)

Second order method (Newton) is affine invariant.



Reformulation of gradient descent

Gradient descent improves the current estimate, perfect for a linear
cost function in a specific coordinate system. Is it the best we can
do (ignoring the 2nd order correction by the Hesse matrix)?

Given step size 7, we find

0" = arg ~ arg max f(6y)+ Vof (60) (6 — 6o)

max  f(6)
0:110—0ol|<n 0:110—0ol|<n

- f (60) (0 — 0
By 1< 0 (90) (0~ %)

Vof (6o)

= O+ n—r
O TV (Bo)]]

i.e. optimally (6 — 6p) has length 7 and is parallel to the unit
vector %' where |[|-]| is the Euclidean norm.

Can we use also other norms (or distance functions)?



Kullback-Leibler divergence

Kullback-Leibler divergence

KL s (o) i 30) = 3 () )log ™ E ;

Consider two similar policies 7, (a|x) and 7,5, (a|x). Perform a
Taylor expansion of KL (m,, (a]x), Twtsw (a]x)):

Constant term: KL (m, (a|x),m, (alx)) =0
Linear term: a%KL (7w (alx), 7, (a]x)) =0

Quadratic term is the Fisher information matrix.



Fisher information

In other words, the Hessian for the Kullback-Leibler divergence is
the Fisher information matrix.

| dlog 7, (a|x) O0log m, (a|x)
Fii (x;0) = Er_ () [ dwi Oy

Benefits

@ As a Hessian the Fisher matrix gives an affine invariant
descent.

@ The approximation of the down/uphill direction becomes
better for non-linear cost functions

@ Fisher information matrix is covariant (means: invariant
against appropriate parameter transformations).

Literature:

@ Natural gradient (S. Amari: Natural gradient works efficiently in learning,
NC 10, 251-276, 1998)

@ Examples by Bagnell and Schneider (2003) and Jan Peters (2003, 2008)



Natural gradient

0 = F1(w)V,p(w) is a natural gradient on

POy = ZW ) Q™ (x,a) m, (alx)

if we can assume the dependency of © and Q on w to be “weak”, i.e

Zﬂ ) Q7 (x,a) Vo, (a]x)

We have seen that
F(w)f =Vop(w)e=Fw) Ve (w) =: Vep(w)

which defines the natural gradient. This implies the following
natural gradient learning rule (Kakade, 2001/2)

Wil = we + Beb;

which is better and simpler than standard policy gradient.
Remember this result is obtained at the cost of the calculation of 6!



Pros and Cons of the Fisher information

+ “Natural” (covariant): uses the geometry of the goal function
rather than the geometry of the parameter space (Choice of
parameters used to be critical, but isn't any more so).

Related to Kullback-Leibler divergence and to Hessian

Describes efficiency in statistical estimation (Cramer-Rao)

+ 4+ +

Many applications in machine learning, statistics and physics

— Depends usually on parameters and is computationally complex
(but not here where were we get it for free: We were lucky!)

— Requires sampling of high-dimensional probability distributions

-+ May still work if some approximation is used, e.g. Gaussian



Kakade's Example

A§5 " T a
unscaled —— ('_\ !

!

“eag, 5,=10s,=1 ===~ L1 )
L o 8,215,210 mee \\-/a
30 RO 2 / 2
. [ R=0 )
8 ay ¥
25 . \
M\‘m a] J_/

pol . TTNaiitaae : R_:g

2T g mey 228

Three right curves: standard gradient, three left curves: natural
gradient

Policy 7 (a|x; w) ~ exp (w151x2 + wzssx)

Starting conditions: wis; = wasp = —0.8



Kakade's Example
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Left: average reward for the policy
7 (2= 1]s;w) ~ exp (w) / (1 + exp (w))

Lower plot represents the beginning of the upper plot (different
scales!): dashed: natural gradient, solid: standard gradient.

Right: Movement in the parameter space (axes are actually w;!)



Examples of natural gradients

(a) Standard (b) Natural r

standard gradient (dashed)
natural gradient (solid)

Grondman et al. (2012) A survey of actor-critic reinforcement learning: Standard and
natural policy gradients. IEEE TA Systems, Man, and Cybernetics 42(6), 1291-1307.



More examples

J. Kober & J. R. Peters: Policy search for motor primitives in
robotics. NIPS 2009, pp. 849-856.
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@ A promising approach for continuous action and state spaces
(in discrete time)

@ Policy gradient as direct maximisation of the averaged
state-action value

@ Natural policy gradient arises from the optimisation of the
value function

@ Model-free reinforcement learning

Acknowledgements: See lecture 12.



