RL 11: RL with Function Approximation ctd.

Michael Herrmann

University of Edinburgh, School of Informatics

23/02/2016

RL with function approximation: Points to remember

•
$$V_{\theta}(x) = \theta^{\top} \varphi(x), \ Q_{\theta}(x, a) = \theta^{\top} \varphi(x, a)$$

• $\theta \in \mathbb{R}^{N}, \ \varphi(x) : \mathcal{X} \to \mathbb{R}^{N}, \ \varphi(x, a) : \mathcal{X} \times \mathcal{A} \to \mathbb{R}^{N}$
• e.g. $V_{\theta}(x) = \sum_{i=1}^{N} \theta_{i} \frac{G(\|x - x^{(i)}\|)}{\sum_{m=1}^{N} G(\|x - x^{(m)}\|)}$

• $\mathsf{TD}(\lambda)$ with function approximation

$$\delta_{t+1} = r_{t+1} + \gamma \theta_t^\top \varphi(\mathbf{x}_{t+1}) - \theta_t^\top \varphi(\mathbf{x}_t)$$

$$z_{t+1} = \varphi(\mathbf{x}_t) + \lambda z_t$$

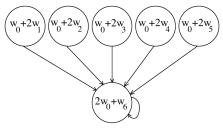
$$\theta_{t+1} = \theta_t + \alpha_t \delta_{t+1} z_{t+1}$$

 $\bullet \ \mathcal{Q}\mbox{-learning with function approximation}$

$$\begin{aligned} \mathbf{a}_{t+1} &= \arg \max_{\mathbf{a}} \theta_t^\top \varphi \left(\mathbf{x}_t, \mathbf{a} \right) \\ \delta_{t+1} &= r_{t+1} + \gamma \max_{\mathbf{a}} \theta_t^\top \varphi \left(\mathbf{x}_{t+1}, \mathbf{a} \right) - \theta_t^\top \varphi \left(\mathbf{x}_t, \mathbf{a}_t \right) \\ \theta_{t+1} &= \theta_t + \alpha_t \delta_{t+1} \varphi \left(\mathbf{x}_t, \mathbf{a}_t \right) \end{aligned}$$

Function approximation: Baird's counter example

• Value of 6 states represented by 7 functions with weights w_i:



$$\Delta w_{i} = \eta \left(r + \gamma V_{\text{new}} - V_{\text{old}} \right) \frac{\partial V_{old}}{\partial w_{i}}$$

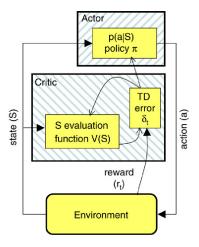
- Update every transition equally often
- If state 6 starts high, it climbs more often than falls.
- All states/weights diverge to $\pm\infty$

Baird, L. (1995) Residual algorithms: Reinforcement learning with function approximation. In Proc. 12. Int. Conf. on Machine Learning, pp. 30-37.

- Actor-Critic Methods (1981, see Barto, Sutton & Anderson, 1983)
- Parametrisation of the policy function: Policy gradient
- Compatible function approximation
- Natural actor-critic (NAC)

Actor-Critic Methods

- Actor aims at improving policy (adaptive search element)
- Critic evaluates the current policy (adaptive critic element)
- Learning is based on the TD error δ_t (usually on-policy)
- Reward only known to the critic
- Critic should improve as well



Actor-Critic Methods

- Policy (actor) is represented independently of the (state) value function (critic)
- Usually on-policy
- A number of variants exist, in particular among the early reinforcement learning algorithms, but also more recent ones

 $\mathsf{Advantages}^1$

- AC methods require minimal computation in order to select actions which is beneficial in continuous cases, where search becomes a problem.
- They can learn an explicitly stochastic policy, i.e. learn the optimal action probabilities. Useful in competitive and non-Markov cases².

¹Mark Lee following Sutton&Barto ²see, e.g., Singh, Jaakkola, and Jordan, 1994 ^{23/02/2016} Michael Hermann RL 11

Example: Policies for the inverted pendulum

- Exploitation (actor): Escape from low-reward regions as fast as possible
- aim at max. r
- e.g. Inverted pendulum task: Wants to stay near the upright position
- preferentially greedy and deterministic

- Exploration (critic): Find examples where learning is optimal
- aim at max. δ
- e.g. Inverted pendulum task: Wants to move away from the upright position
- preferentially non-deterministic

Critic-only methods and Actor-only methods

- Critic-only methods: Value function approximation and learning an approximate solution to the Bellman equation. Do not try to optimize directly over a policy space. May succeed in constructing a "good" approximation of the value function, yet lack reliable guarantees in terms of near-optimality of the resulting policy.
- Actor-only methods work with a parametrised family of policies. The gradient of the performance, with respect to the actor parameters, is directly estimated by simulation, and the parameters are updated in a direction of improvement.
 A possible drawback of such methods is that the gradient estimators may have a large variance. Furthermore, as the policy changes, a new gradient is estimated independently of past estimates. Hence, there is no "learning" in the sense of accumulation and consolidation of older information.

Konda, V. R., & Tsitsiklis, J. N. (1999). Actor-Critic Algorithms. In NIPS 13, 1008-1014.

Parametric policy

Approximation of the value function or action-value function using parametric function

$$egin{array}{lll} \hat{V}_{ heta}(x) &pprox & V(x) \ \hat{Q}_{ heta}(x; { extbf{a}}) &pprox & Q(x; { extbf{a}}) \end{array}$$

Policy can be generated directly from the value function e.g. using $\varepsilon\text{-}\mathsf{greedy}$ exploration

Today we will directly use a parametric function also to represent the policy

$$\pi_{\omega}(a|x) = \mathsf{Prob}[a|x]$$

Benefits: no worries about value function, uncertain state information or complexity arising from continuous states and actions Problems: Needs good parametrisation. How to do exploration?

 $http://www.scholarpedia.org/article/Policy_gradient_methods$

Reformulation of the goal of reinforcement learning

Maximise global average of expected return (cummulative reward)

$$\rho_{\mathcal{Q},\pi} = \int_{\mathcal{X}} \int_{\mathcal{A}} \mathcal{Q}(x,a) \pi(a|x) \mu(x) da dx$$
$$= \int_{\mathcal{X}} \mu(x) \int_{\mathcal{A}} \mathcal{Q}(x,a) \pi(a|x) da dx$$

• ρ is equivalent to long-run average expected reward (if ergodic) • μ is the (stationary) density of states, π is a stochastic policy

Function approximation for the value function and for the policy: Maximisation over a restricted class of policies to prevent overfitting e.g. using policies π_{ω} parametrised by parameter vector $\omega \in \mathbb{R}^{d_{\omega}}$. Perform stochastic gradient ascent on $\rho_{\mathcal{Q},\pi_{\omega}} =: \rho_{\omega}$ in order to find

arg max
$$\rho_{\omega}$$
 locally, using: $\omega_{t+1} = \omega_t + \beta_t \nabla_{\omega} \rho_{\omega}$
where $\omega = (\omega_1, \dots, \omega_M)^{\top}$ and ∇_{ω} is the gradient $\left(\frac{\partial}{\partial \omega_1}, \dots, \frac{\partial}{\partial \omega_M}\right)^{\top}$

Reformulation of the goal of reinforcement learning

Another form for the global average of the expected reward:

$$\rho_{\pi_{\omega}} = \sum_{x} \mu^{\pi_{\omega}} (x) V^{\pi_{\omega}} (x)$$
$$\rho_{\mathcal{Q},\pi_{\omega}} = \sum_{x,a} \mu^{\pi_{\omega}} (x) \pi_{\omega} (a|x) \mathcal{Q}^{\pi_{\omega}} (x,a)$$

In order to realise the policy gradient

$$\omega_{t+1} = \omega_t + \beta_t \nabla_\omega \rho_\omega$$

we will assume the dependency of μ and Q on ω to be "weak", i.e. use a simplifying assumption for the dependency of μ and Q on ω , namely

$$\nabla_{\omega}\rho\left(\omega\right) = \sum_{\mathsf{x},\mathsf{a}} \mu^{\pi}\left(\mathsf{x}\right) \left\{ \nabla_{\omega}\pi_{\omega}\left(\mathsf{a}|\mathsf{x}\right) \right\} \mathcal{Q}^{\pi}\left(\mathsf{x},\mathsf{a}\right)$$

A simplified example (to start with)

Consider only immediate reward (bandits with several "casinos")

$$\rho_{\omega} = \langle r(x, a) \rangle_{a,x}$$

$$= \sum_{x} \mu(x) \sum_{a} \pi_{\omega}(a|x) r(x, a)$$

$$\nabla_{\omega} \rho_{\omega} = \sum_{x} \mu(x) \sum_{a} \pi_{\omega}(a|x) \nabla_{\omega} \log \pi_{\omega}(a|x) r(x, a)$$

$$= \sum_{x} \sum_{a} (\pi_{\omega}(a|x) \mu(x)) \nabla_{\omega} \log \pi_{\omega}(a|x) r(x, a)$$

$$= \langle \nabla_{\omega} \log \pi_{\omega}(a|x) r(x, a) \rangle_{a,x}$$

The score function $(\nabla \log \pi)$ comes into play by expressing the gradient as an average.

N.B.:
$$\frac{df(t)}{dt} = f(t) \frac{d\log f(t)}{dt}$$

Let Ψ_{ω} : $\mathcal{X} \times \mathcal{A} \to \mathbb{R}^{d_{\omega}}$ be the *score function* for π_{ω} , i.e.

$$\Psi_{\omega}\left(x,a
ight)=
abla_{\omega}\log\pi_{\omega}\left(a|x
ight)$$

Score functions are also used in statistics (remember that $\pi(a|x)$ is a probability)

Example: Non-deterministic Gibbs- Boltzmann policies (for finite action space)

$$\pi_{\omega}\left(\mathbf{a}|\mathbf{x}\right) = \frac{\exp\left(\omega^{\top}\xi\left(\mathbf{x},\mathbf{a}\right)\right)}{\sum_{\mathbf{a}'\in\mathcal{A}}\exp\left(\omega^{\top}\xi\left(\mathbf{x},\mathbf{a}\right)\right)}$$

 ω are parameters and ξ are features (similar to θ and ψ for the approximation of the value function, but now it's for the policy)

$$\Psi_{\omega}\left(x,a\right) = \xi\left(x,a\right) - \sum_{a' \in \mathcal{A}} \pi_{\omega}\left(a'|x\right) \xi\left(x,a'\right)$$

Let Ψ_{ω} : $\mathcal{X} \times \mathcal{A} \to \mathbb{R}^{d_{\omega}}$ be the *score function* for π_{ω} , i.e.

$$\Psi_{\omega}\left(x,a
ight)=rac{\partial}{\partial\omega}\log\pi\left(a|x
ight)$$

Example: For infinite action space, Gaussian policies

$$\pi_{\omega} \left(\mathbf{a} | \mathbf{x} \right) = \frac{\left(2 \cdot 3.141.. \right)^{-d_{\omega}/2}}{\sqrt{\det \Xi_{\omega}}} \exp \left(- \left(\mathbf{a} - \omega \cdot \mathbf{g} \left(\mathbf{x} \right) \right)^{\top} \Xi_{\omega}^{-1} \left(\mathbf{a} - \omega \cdot \mathbf{g} \left(\mathbf{x} \right) \right) \right)$$

The positive matrix $\Xi > 0$ is often simply a scaled version of the unit matrix, i.e. $\Xi = c\mathbf{I}$. Then, for $\omega = (\omega_1, \dots, \omega_M)$,

$$\Psi_{\omega_{i}}\left(x,a\right)=-\left(c^{-1}\right)^{\top}\mathsf{I}\left(a-\omega\cdot g_{\omega}\left(x\right)\right)g_{i}\left(x\right)$$

... seems to provide us with reasonable gradients for typical policies

Does it work? The policy gradient theorem

Assume: Markov chain resulting from policy π_{ω} is ergodic for any ω Estimate the gradient of ρ_{ω}

Policy gradient theorem (Bhatnagar et al., 2009)

$$abla _{\omega }
ho _{\omega }=\mathbb{E}_{\mathsf{x},\mathsf{a}}\left[B\left(\omega
ight)
ight]$$

where

$$B\left(\omega
ight)=\left(\mathcal{Q}^{\pi_{\omega}}\left(x,a
ight)-h\left(x
ight)
ight)\Psi_{\omega}\left(x,a
ight)$$

h an arbitrary bounded function (will be used later) that depends only on *x* and $\Psi_{\omega}(x, a)$ is the *score function* of the policy.

Instead of the expectation we will use a sample average $\langle \cdot \rangle$, i.e. a stochastic gradient version (i.e. following estimated gradient of ρ_{ω})

$$\hat{
abla}_{\omega}
ho_{\omega}=\left\langle B\left(\omega
ight)
ight
angle$$

Adding a baseline

The introduction of a free function h(x) is justified because

$$\sum_{x} \mu^{\pi}(x) \sum_{a} \nabla \pi(x, a) h(x) = \sum_{x} \mu^{\pi}(x) h(x) \nabla \sum_{a} \pi(x, a)$$
$$= \sum_{x} \mu^{\pi}(x) h(x) \nabla 1 = 0$$

so it does not affect the calculation of the gradient:

$$\nabla_{\omega}\rho\left(\omega\right) = \sum_{x} \mu^{\pi}\left(x\right) \sum_{a} \nabla_{\omega}\pi_{\omega}\left(a|x\right) \left(\mathcal{Q}^{\pi}\left(x,a\right) - h\left(x\right)\right)$$

How is the baseline h useful?

h may, e.g., represent a baseline for the value or express other constraints (see next slide)

Features φ [used in the state-action value function] are to some extent arbitrary. Introduce orthogonality condition as additional constraint:

$$\sum_{\mathbf{a}\in\mathcal{A}}\pi\left(\mathbf{a}|\mathbf{x}\right)\varphi\left(\mathbf{x},\mathbf{a}\right)=\mathbf{0}$$

Using state features $\psi : \mathcal{X} \to \mathbb{R}^d$, perform a change of basis functions:

$$\mathcal{Q}_{ heta}\left(\mathbf{x},\mathbf{a}
ight) = \mathbf{ heta}^{ op}\left(\psi\left(\mathbf{x}
ight) - arphi\left(\mathbf{x},\mathbf{a}
ight)
ight)$$

Then $V_{\theta}(x) = \sum_{a \in \mathcal{A}} \pi(a|x) \mathcal{Q}_{\theta}(x, a) = \theta^{\top} \psi(x)$

In the learning rule, set $V_{t+1} = V_{\theta}(x_{t+1})$ which is now independent on the randomness of (non-deterministic) action choice

- \rightarrow lower variance
- ightarrow better estimation of V

Back to the policy gradient theorem: Update rule for ω

Stochastic gradient of global reward average

$$\hat{\nabla}_{\omega}\rho_{\omega}=B\left(\omega\right)$$

where

$$B\left(\omega
ight)=\left\langle \left(\mathcal{Q}^{\pi_{\omega}}\left(x,\mathsf{a}
ight)-h\left(x
ight)
ight)\Psi_{\omega}\left(x,\mathsf{a}
ight)
ight
angle$$

Typical (but not optimal) choice for $h: h = V^{\pi_{\omega_t}}$ A(x, a) = Q(x, a) - V(x) is sometimes called "advantage".

Now, form a stochastic gradient ascent on ho

$$\omega_{t+1} = \omega_t + \beta_t B_t$$

 β_t : decreasing learning rate (Robbins-Monro conditions!) Depends on estimates of Q. There are several ways to approximate.

Required are good estimates of Q and stationary samples of x and a

For episodic problems: Gradient ascent on the expected reward (MC!)

Update parameters at the end of each episode

 \rightarrow REINFORCE algorithms

In this way a direct policy search (without value functions) is possible

In non-episodic problems: two time-scales $\alpha \gg \beta$: make sure that the estimate \hat{Q} is faster, i.e. can be assumed to have no bias, policy is changing slowly such that this is actually possible

Actor-critic algorithms maintain two sets of parameters (θ, ω) , one (θ) for the representation of the value function and one (ω) for the representation of the policy.

x'

Algorithm:

- Initialise x and ω , sample $a \sim \pi_{\omega}\left(\cdot|x
 ight)$
- Iterate:

• Until termination criterion.

The policy gradient has many similar forms which are different realisations of the stochastic gradient w.r.t. to ρ

$$\begin{aligned} \nabla_{\omega} \rho_{\omega}^{(a)} &= \langle \nabla_{\omega} \log \pi_{\omega} \left(a | x \right) \Sigma r_{t} \rangle & \text{REINFORCE} \\ \nabla_{\omega} \rho_{\omega}^{(b)} &= \langle \nabla_{\omega} \log \pi_{\omega} \left(a | x \right) \mathcal{Q}_{\theta} \left(x, a \right) \rangle & \mathcal{Q} \text{ AC} \\ \nabla_{\omega} \rho_{\omega}^{(c)} &= \langle \nabla_{\omega} \log \pi_{\omega} \left(a | x \right) A_{\theta} \left(x, a \right) \rangle & \text{advantage AC} \\ \nabla_{\omega} \rho_{\omega}^{(d)} &= \langle \nabla_{\omega} \log \pi_{\omega} \left(a | x \right) \delta \rangle & \text{TD AC} \\ \nabla_{\omega} \rho_{\omega}^{(e)} &= \langle \nabla_{\omega} \log \pi_{\omega} \left(a | x \right) \delta e \rangle & \text{TD} \left(\lambda \right) \text{ AC} \\ \widetilde{\nabla}_{\omega} \rho_{\omega}^{(f)} &= \theta & \text{natural AC} \end{aligned}$$

AC: actor-critic

Bias and Variance in the Actor-Critic Algorithm

The approximation of the policy gradient introduces bias and variance. We need to be careful with the choice of the function approximation for Q.

We will see in a moment that a compatibility of the representations of value function and policy is acheived, if we require

 $\nabla_{\theta} \mathcal{Q}_{\theta} = \nabla_{\omega} \log \pi_{\omega}$

Consider minimal squared error when calculating ρ based on an approximation $\hat{Q}^{\pi}(x, a; \theta)$ instead of the true $Q^{\pi}(x, a)$

$$\epsilon^{\pi}\left(heta
ight) = \sum_{x,a} \mu^{\pi}\left(x
ight) \left(\hat{\mathcal{Q}}^{\pi}\left(x,a; heta
ight) - \mathcal{Q}^{\pi}\left(x,a
ight)
ight)^{2} \pi_{\omega}\left(a|x
ight)$$

We want to show now that using the best (w.r.t. θ) approximation $\hat{Q}^{\pi}(x, a; \theta)$ leaves the gradient of ρ (w.r.t to ω) unchanged.

S. Kakade (2001) A natural policy gradient. NIPS 14, 1531-1538.

Use score function

$$\Psi_{i}(x,a)^{\pi} = rac{\partial}{\partial \omega_{i}} \log \pi_{\omega}(a|x)$$

as basis functions, i.e. approximate of the state-action value function in terms of $\boldsymbol{\Psi}$

$$\hat{\mathcal{Q}}^{\pi}\left(x, \mathsf{a}; heta
ight) = \sum_{i} heta_{i} \Psi^{\pi}_{i}\left(x, \mathsf{a}
ight) =: heta \Psi^{\pi}\left(x, \mathsf{a}
ight)$$

This implies $\nabla_{\theta} Q_{\theta} = \nabla_{\omega} \log \pi_{\omega}$. It is usually possible, but may not always be a good choice (consider e.g. Gaussian π_{ω} which give linear Ψ)

Consequences of the compatible function approximation

Minimisation of
$$\epsilon$$
, i.e. $\frac{\partial \epsilon}{\partial \omega_i} = 0$, implies

$$\sum_{x,a} \mu^{\pi}\left(x\right) \Psi_{i}\left(x,a\right)^{\pi} \left(\hat{\mathcal{Q}}^{\pi}\left(x,a;\theta\right) - \mathcal{Q}^{\pi}\left(x,a\right)\right) \pi_{\omega}\left(a|x\right) = 0$$

or equivalently (this is what we wanted to show!)

$$\sum_{x,a} \mu^{\pi}(x) \Psi_i(x,a)^{\pi} \hat{\mathcal{Q}}^{\pi}(x,a;\theta) \pi_{\omega}(a|x) = \sum_{x,a} \mu^{\pi}(x) \Psi_i(x,a)^{\pi} \mathcal{Q}^{\pi}(x,a) \pi_{\omega}(a|x)$$

and in vector form using basis functions for $\hat{\mathcal{Q}}^{\pi}=\theta\Psi(x,a)^{\pi}$

$$\sum_{x,a} \mu^{\pi}(x) \Psi(x,a)^{\pi} \theta \Psi(x,a)^{\pi} \pi_{\omega}(a|x) = \sum_{x,a} \mu^{\pi}(x) \Psi(x,a)^{\pi} \mathcal{Q}^{\pi}(x,a) \pi_{\omega}(a|x)$$

Consequences of the compatible function approximation

$$\sum_{x,a} \mu^{\pi}(x) \Psi(x,a)^{\pi} \theta \Psi(x,a)^{\pi} \pi_{\omega}(a|x) = \sum_{x,a} \mu^{\pi}(x) \Psi(x,a)^{\pi} \mathcal{Q}^{\pi}(x,a) \pi_{\omega}(a|x)$$

By definition $\nabla_{\omega} \pi = \pi \Psi_{i}(x,a)^{\pi}$ because $\Psi_{i}(x,a)^{\pi} = \frac{\partial}{\partial \omega_{i}} \log \pi_{\omega}(a|x)$
$$\sum_{x,a} \mu^{\pi}(x) \Psi(x,a)^{\pi} \theta \Psi(x,a)^{\pi} \pi_{\omega}(a|x) = \sum_{x,a} \mu^{\pi}(x) \mathcal{Q}^{\pi}(x,a) \nabla_{\omega} \pi_{\omega}(a|x)$$
$$= \nabla_{\omega} \rho(\omega)$$

Compare left hand side and

$$F(\omega) = \mathbb{E}_{\mu^{\pi}(x)} \left[\mathbb{E}_{\pi_{\omega}(a|x)} \left[\frac{\partial \log \pi_{\omega}(a|x)}{\partial \omega_{i}} \frac{\partial \log \pi_{\omega}(a|x)}{\partial \omega_{j}} \right] \right]$$
$$= \sum_{x,a} \mu^{\pi}(x) \pi_{\omega}(a|x) \frac{\partial \log \pi_{\omega}(a|x)}{\partial \omega_{i}} \frac{\partial \log \pi_{\omega}(a|x)}{\partial \omega_{j}}$$
$$\sum_{x,a} \mu^{\pi}(x) \Psi(x,a)^{\pi} \Psi(x,a)^{\pi} \pi_{\omega}(a|x) \Rightarrow F(\omega) \theta = \nabla_{\omega} \rho(\omega)$$

Gradient descent/ascent

Given an objective function, e.g. average undiscounted reward,

$$\rho_{\mathcal{Q},\pi,\mu} = \sum_{\mathbf{x}\in\mathcal{X}} \sum_{\mathbf{a}\in\mathcal{A}} \mu(\mathbf{x}) \mathcal{Q}(\mathbf{x},\mathbf{a}) \pi(\mathbf{a}|\mathbf{x}),$$

depends (via π as well as Q and μ) on a vector of parameters ω . Maximisation

$$ho\left(\omega+d\omega
ight)-
ho\left(\omega
ight)
ightarrow$$
 max for fixed $\left|d\omega
ight|$

 $|d\omega|$ is the length of the $d\omega$, defined by $|d\omega|^2 = \sum_{ij} J_{ij}\omega_i\omega_j$

If $J = \{J_{ij}\}$ is the unit matrix, the length is given by the standard Pythagorean theorem $|d\omega|^2 = \sum_i \omega_i^2 \Rightarrow$ the geometry is Euclidean. The question: Where on a small circle of radius $|d\omega|$ around ω the value of ρ is largest? implies standard gradient ascent.

Idea: Use J > 0 to take shape of objective ρ into account.

Fisher Information

How take the shape of the objective into account?

$$\rho_{\mathcal{Q},\pi,\mu} = \sum_{x,a} \mu^{\pi_{\omega}} \left(x \right) \mathcal{Q}^{\pi_{\omega}} \left(x, a \right) \pi_{\omega} \left(a | x \right)$$

Assume the dependency of μ and ${\mathcal Q}$ on ω to be "weak", i.e.

$$abla_{\omega}
ho\left(\omega
ight)=\sum_{x,\mathsf{a}}\mu^{\pi}\left(x
ight)\mathcal{Q}^{\pi}\left(x,\mathsf{a}
ight)
abla_{\omega}\pi_{\omega}\left(\mathsf{a}|x
ight)$$

It can be shown that the solution is to choose J_{ij} as the inverse of

$$F_{ij}(x;\omega) = \mathbb{E}_{\pi_{\omega}(a|x)} \left[\frac{\partial \log \pi_{\omega}(a|x)}{\partial \omega_{i}} \frac{\partial \log \pi_{\omega}(a|x)}{\partial \omega_{j}} \right]$$

Remove state dependency by fixing ω and averaging over state distribution that are produced on the long run by the policy π_ω

$$F(\omega) = \mathbb{E}_{\mu^{\pi}(x)} [F_{ij}(x;\omega)]$$

Assuming this was correct we have now the natural gradient on ho

$$d\omega \sim F\left(\omega
ight)^{-1}
abla
ho\left(\omega
ight) = \eta ilde{
abla}
ho\left(\omega
ight)$$

Pros and Cons of the Fisher information

- + "Natural" (*covariant*): uses the geometry of the goal function rather than the geometry of the parameter space (Choice of parameters used to be critical, but isn't any more so).
- + Related to Kullback-Leibler divergence and to Hessian
- + Describes efficiency in statistical estimation
- $+\,$ Many applications in machine learning, statistics and physics
- Depends on parameters and is computationally complex
- Requires sampling of high-dimensional probability distribution
- + May still work if some approximation is used here: Integrate over a generic data distribution (e.g. Gaussian)
- Applying the natural gradient can be interpreted as a removal of any adverse effects of the particular architecture
- Another interpretation: Modified geometry: If J > 0 then all eigenvalues λ_k of this matrix are positive and $|d\omega|^2 = \sum_{ij} J_{ij}\omega_i\omega_j$ describes an ellipsoid with semi-axes λ_k

$$F(\omega)\theta = \nabla_{\omega}\rho(\omega) \Leftrightarrow \theta = F(\omega)^{-1}\nabla_{\omega}\rho(\omega) = \tilde{\nabla}_{\omega}\rho(\omega)$$

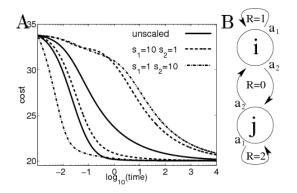
Learning rule (Kakade, 2001/2)

$$\omega_{t+1} = \omega_t + \beta_t \theta_t$$

Remarks:

- Natural gradient (S. Amari: Natural gradient works efficiently in learning, NC 10, 251-276, 1998)
- Examples by Bagnell and Schneider (2003) and Jan Peters (2003, 2008)

Kakade's Example

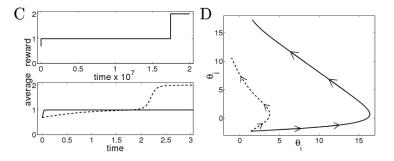


Three right curves: standard gradient, three left curves: natural gradient

Policy
$$\pi(a|x;\omega) \sim \exp(\omega_1 s_1 x^2 + \omega_2 s_2 x)$$

Starting conditions: $\omega_1 s_1 = \omega_2 s_2 = -0.8$

Kakade's Example



Left: average reward for the policy $\pi (a = 1|s; \omega) \sim \exp(\omega) / (1 + \exp(\omega))$

Lower plot represents the beginning of the upper plot (different scales!): dashed: natural gradient, solid: standard gradient.

Right: Movement in the parameter space (axes are actually ω_i !)

- A systematic approach for continuous actions and space (time is discrete)
- Policy gradient as maximisation of the averaged state-action value
- Natural gradient leads to a very simple form
- Model-free reinforcement learning

Some material was adapted from web resources associated with Sutton and Barto's Reinforcement Learning book. Today mainly based on C. Szepesvári: *Algorithms for RL*, Ch. 3.4. See also: David Silber's Lecture 7: Policy Gradient