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RL with function approximation: Points to remember

o Vo(x)=0T¢(x), Qo(x,a)=0T¢(x,a)
0eRN  p(x): X RN, p(x,a): X x A— RN

Y G(Ilx—x"])
eg. Vo(x) =>4 eizgzl G([[x—x(m))

e TD(A) with function approximation

Ser1 = rev1 +70; ¢ (xe1) = 0] ¢ (x)
Zey1 = o(xe) + Az
Orr1 = O+ arder12ze41
@ Q-learning with function approximation
ary1 = argmaxf, ¢ (xt,a)
a
Or+1 = [rep1+7ymax 0/ ¢ (xe+1,3) = 0/ ¢ (xt, ar)

9t+1 = 0t + Oét5t+190 (Xtv af)



Function approximation: Baird's counter example

@ Value of 6 states represented by 7 functions with weights w;:

(o))
o

oV,
Aw; =1 (r+7Vnew — V) 522

ow;

e Update every transition equally often
o If state 6 starts high, it climbs more often than falls.
o All states/weights diverge to +oo

Baird, L. (1995) Residual algorithms: Reinforcement learning with function approximation. In Proc. 12.
Int. Conf. on Machine Learning, pp. 30-37.



Today's topics

@ Actor-Critic Methods (1981, see Barto, Sutton & Anderson, 1983)
@ Parametrisation of the policy function: Policy gradient

o Compatible function approximation

e Natural actor-critic (NAC)



Actor aims at improving
policy (adaptive search
element)

Critic evaluates the
current policy (adaptive
critic element)

Learning is based on the
TD error d0; (usually
on-policy)

Reward only known to the
critic

Critic should improve as
well
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Actor-Critic Methods

@ Policy (actor) is represented independently of the (state) value
function (critic)

@ Usually on-policy

@ A number of variants exist, in particular among the early
reinforcement learning algorithms, but also more recent ones

Advantages!

@ AC methods require minimal computation in order to select
actions which is beneficial in continuous cases, where search
becomes a problem.

@ They can learn an explicitly stochastic policy, i.e. learn the

optimal action probabilities. Useful in competitive and

non-Markov cases?.

Mark Lee following Sutton&Barto
2see, e.g., Singh, Jaakkola, and Jordan, 1994



Example: Policies for the inverted pendulum

e Exploitation (actor): e Exploration (critic):
Escape from low-reward Find examples where
regions as fast as possible learning is optimal

@ aim at max. r @ aim at max. ¢

@ e.g. Inverted pendulum @ e.g. Inverted pendulum
task: Wants to stay near task: Wants to move away
the upright position from the upright position

o preferentially greedy and o preferentially

deterministic non-deterministic



Critic-only methods and Actor-only methods

@ Critic-only methods: Value function approximation and
learning an approximate solution to the Bellman equation. Do
not try to optimize directly over a policy space. May succeed
in constructing a “good” approximation of the value function,
yet lack reliable guarantees in terms of near-optimality of the
resulting policy.

@ Actor-only methods work with a parametrised family of
policies. The gradient of the performance, with respect to the
actor parameters, is directly estimated by simulation, and the
parameters are updated in a direction of improvement.

A possible drawback of such methods is that the gradient
estimators may have a large variance. Furthermore, as the
policy changes, a new gradient is estimated independently of
past estimates. Hence, there is no “learning” in the sense of
accumulation and consolidation of older information.

Konda, V. R., & Tsitsiklis, J. N. (1999). Actor-Critic Algorithms. In NI/PS 13, 1008-1014.

See also Refs. 8, 10, 16, 23 therein.



Parametric policy

Approximation of the value function or action-value function using
parametric function

) Vo(x) V(x)
Q(x;a) ~ Q(x;a)

%

Policy can be generated directly from the value function e.g. using
e-greedy exploration

Today we will directly use a parametric function also to represent
the policy
7 (a|x) = Prob|a|x]

Benefits: no worries about value function, uncertain state informa-
tion or complexity arising from continuous states and actions

Problems: Needs good parametrisation. How to do exploration?

http://www.scholarpedia.org/article/Policy _gradient methods



Reformulation of the goal of reinforcement learning

Maximise global average of expected return (cummulative reward)

por = [ [ @xa)m(abe) () dadx
- /X,u,(x)/AQ(x,a)ﬂ(a]X)dadx

@ pis equivalent to long-run average expected reward (if ergodic)

@ 1 is the (stationary) density of states, 7 is a stochastic policy

Function approximation for the value function and for the policy:

Maximisation over a restricted class of policies to prevent overfitting
e.g. using policies 7, parametrised by parameter vector w € R%.

Perform stochastic gradient ascent on pg , =: p,, in order to find

argmaxp, locally, using:  wii1 = wt + BtVupw
w

where w=(w1,...,wpy) and V, is the gradient <871’ e m)



Reformulation of the goal of reinforcement learning

Another form for the global average of the expected reward:
Pry = Z 'uﬂw Vﬂw )
PO, = me x) ., (alx) Q™ (x, a)

In order to realise the policy gradient
w1 = wr + B Viupw

we will assume the dependency of 1 and Q on w to be “weak”,
i.e. use a simplifying assumption for the dependency of y and Q on
w, namely

Vup (W) = ZM ) {Vum, (alx)} Q7 (x, a)



A simplified example (to start with)

Consider only immediate reward (bandits with several “casinos”)

po = (r(xa)),,

P MICORNCOICE
Vopw = Zu wa(a|x )V log m, (alx) r (x, a)
= ZZ T (alx) 11 (x)) Vi, log m,, (a]x) r (x, a)

— <leog7rw(a|x) r(x,a) ),

The score function (V log ) comes into play by expressing the
gradient as an average.

N B df(t) _ f‘ (t) d|0§tf(t)



Score function

Let W, : X x A — R% be the score function for 7, i.e.

v, (X, a) =V, logm, (a|X)
Score functions are also used in statistics (remember that 7 (a|x) is
a probability)

Example: Non-deterministic Gibbs- Boltzmann policies (for finite
action space)

exp (WTg (x, a))
Za’eA exp (WT£ (X’ a))

w are parameters and ¢ are features (similar to 6 and 1 for the
approximation of the value function, but now it's for the policy)

V, (x,a) = £&(x,a) — Z T (&']x) € (x, )

aeA

Ty (alx) =




Score function

Let W, : X x A — R% be the score function for 7, i.e.

VU, (x,a) = % log 7 (a]x)

Example: For infinite action space, Gaussian policies

(al) (2-3.141..)"%/2
0y =
“ Vdet =,

The positive matrix = > 0 is often simply a scaled version of the
unit matrix, i.e. = = cl. Then, for w = (w1, ...,wn),

oxp (— (2 —wg () 2512 —wg ()

W, (6,3) = = (¢ ) 1(a—w- g (x) & (%)

.. seems to provide us with reasonable gradients for typical policies



Does it work? The policy gradient theorem

Assume: Markov chain resulting from policy 7, is ergodic for any w
Estimate the gradient of p,,

Policy gradient theorem (Bhatnagar et al., 2009)
Vupw = Exa [B (w)]

where

B(w) =(Q™ (x,a) = h(x)) Vo (x,4)

h an arbitrary bounded function (will be used later) that depends
only on x and W, (x, a) is the score function of the policy.

Instead of the expectation we will use a sample average (-), i.e. a
stochastic gradient version (i.e. following estimated gradient of p,,)

@wpw = <B (w)>



Adding a baseline

The introduction of a free function h(x) is justified because

Z,u ZVTFXB Z,u (X)VZ?T(X,Q)
S0 h() 71—

so it does not affect the calculation of the gradient:

w) =Y 1" (%)Y Vums (alx) (Q7 (x,3) — h(x))

How is the baseline h useful?

h may, e.g., represent a baseline for the value or express other
constraints (see next slide)



Function approximation: Decoupling state value and policy

Features ¢ [used in the state-action value function] are to some
extent arbitrary. Introduce orthogonality condition as additional

constraint:
Y w(alx)p(x,a) =0
acA

Using state features ¢ : X — RY, perform a change of basis
functions:

Q(x,a) =07 (¥ (x) — ¢ (x,2))
Then Vp (x) = Y ,cam(alx) Qo (x,a) =079 (x)

In the learning rule, set Vi1 = Vj (x¢+1) which is now independent
on the randomness of (non-deterministic) action choice

— lower variance
— better estimation of V



Back to the policy gradient theorem: Update rule for w

Stochastic gradient of global reward average

where

B (w) = ((Q™ (x,a) — h(x)) Vs (x, a))
Typical (but not optimal) choice for h: h = V7wt
A(x,a) = Q(x,a) — V (x) is sometimes called “advantage”.
Now, form a stochastic gradient ascent on p
Wiyl = wt + BeBe

B¢ decreasing learning rate (Robbins-Monro conditions!)

Depends on estimates of Q. There are several ways to approximate.



REINFORCE (Williams, 1987)

Required are good estimates of Q and stationary samples of x and a

For episodic problems: Gradient ascent on the expected reward
(MCh)

Update parameters at the end of each episode
— REINFORCE algorithms

In this way a direct policy search (without value functions) is
possible

In non-episodic problems: two time-scales o > [3: make sure that
the estimate Q is faster, i.e. can be assumed to have no bias,
policy is changing slowly such that this is actually possible



Action-value Actor-Critic

Actor-critic algorithms maintain two sets of parameters (6, w),
one (0) for the representation of the value function and one (w) for
the representation of the policy.

Algorithm:

e Initialise x and w, sample a ~ m,, (:|x)
@ lterate:

obtain reward r, transition to new state x’
new action a’ ~ m, (:|x’)

d=r+ 7Q9 (X/a a/) - Qs (Xa a)

w=w+ BV, logm, (a|X) Qo (X» a)
0=0+ai%s

a<—a, x+x

o Until termination criterion.



Variants of policy gradient

The policy gradient has many similar forms which are different
realisations of the stochastic gradient w.r.t. to p

Vopld) = (Y, logm, (a|x) re) REINFORCE
vac(ub) = (Vulogm, (alx) Qs (x, a)) QAC
Vol = (V,logm, (alx)Ag(x,a)) advantage AC
Vopld) = (V,logm, (alx)d) TD AC
Vupl® = (V,logm, (ax)de) TD (M) AC
%pﬁﬁ = 40 natural AC

AC: actor-critic



Bias and Variance in the Actor-Critic Algorithm

The approximation of the policy gradient introduces bias and
variance. We need to be careful with the choice of the function
approximation for Q.

We will see in a moment that a compatibility of the representations
of value function and policy is acheived, if we require

V9Qy = V,, logm,

Consider minimal squared error when calculating p based on an
approximation Q7 (x, a; 6) instead of the true Q™ (x, a)

e () = ZM ) (97 (x.2:0) ~ @7 (x.9)) o (a])

We want to show now that using the best (w.r.t. §) approximation
O™ (x, a; 0) leaves the gradient of p (w.r.t to w) unchanged.

S. Kakade (2001) A natural policy gradient. NIPS 14, 1531-1538.



Compatible function approximation

Use score function

V;(x,a)" = (3(2 log 7, (a]x)

as basis functions, i.e. approximate of the state-action value
function in terms of W

O™ (x,a;0) = > _0;VF (x,a) = OV (x,a)

1

This implies VyQy = V,, log m,. It is usually possible, but may not
always be a good choice (consider e.g. Gaussian ,, which give
linear V)



Consequences of the compatible function approximation

C e . de . .
Minimisation of ¢, i.e. B = 0, implies

ZN (Q” (x,a,0) — O (x, a)) 7w (alx) = 0

or equivalently (this is what we wanted to show!)

S i, 2 Qx, 21 0)malx) =S )W, )" Qx, 3)m(alx)

X,a X,a

and in vector form using basis functions for O™ = W(x, a)"

> )W (x, a)"0W (x, @) (alx) =) _uT(x)¥(x, a)"Q7(x; a)m(alx)

x,a x,a



Consequences of the compatible function approximation

> T )W(x, a)70W(x, a) i, (alx) =) _p(x)W(x, a)"Q(x, a)m.(a|x)

By definition V,m = 7W; (x,a)" because W;(x, a)“:i,logww(a|x)
Z,u”(x)tll(x a)"oV(x, a)"m,(a|x) Z,u )Q(x, a)Vymy(alx)

x,a

- va( )
Compare left hand side and

F)= By [Em“) [8|og 7. (alx) 0log m, (a\x)”

8&1,‘ &Uj
B Jlog m,, (a|x) 0 log 7, (a|x)
Z'u a\x 80.),' &uj

Z,u”(x)llf(x,a) V(x,a)"m,(alx) = F(w)0 =V,p(w)

X,a



Gradient descent/ascent

Given an objective function, e.g. average undiscounted reward,

PO,mu = ZZM(X)QXQ (a|X)7

xeX acA

depends (via 7 as well as Q and ) on a vector of parameters w.

Maximisation
p(w+ dw) — p(w) = max for fixed |dw|

|dw| is the length of the dw, defined by |dw|? = > Jiwiw;

If J={J;} is the unit matrix, the |ength is given by the standard
Pythagorean theorem |dw|?> = " w? = the geometry is Euclidean.
The question: Where on a small C/rc/e of radius |dw| around w the
value of p is largest? implies standard gradient ascent.

Idea: Use J > 0 to take shape of objective p into account.



Fisher Information

How take the shape of the objective into account?

PO = ZMW“ ) Q™ (x, a) Ty (a]x)

Assume the dependency of i and Q on w to be “weak”, i.e

ZN ) Q" (x, a) Vuy, (a]x)

It can be shown that the squtlon is to choose Jj; as the inverse of

_ 0 log m,, (a]x) 0 log 7, (a|x)
Fi 06) = ot [ Do O

Remove state dependency by fixing w and averaging over state
distribution that are produced on the long run by the policy

F(w) = Epm () [Fj (x;w)]

Assuming this was correct we have now the natural gradient on p

dw ~ F (w) " Vp(w) =nVp (w)




Pros and Cons of the Fisher information

+ “Natural” (covariant): uses the geometry of the goal function
rather than the geometry of the parameter space (Choice of
parameters used to be critical, but isn't any more so).

Related to Kullback-Leibler divergence and to Hessian

Describes efficiency in statistical estimation

— 4+ o+

Many applications in machine learning, statistics and physics
— Depends on parameters and is computationally complex

— Requires sampling of high-dimensional probability distribution
-+ May still work if some approximation is used here: Integrate

over a generic data distribution (e.g. Gaussian)

@ Applying the natural gradient can be interpreted as a removal
of any adverse effects of the particular architecture

@ Another interpretation: Modified geometry: If J > 0 then all
eigenvalues Ay of this matrix are positive and
|dw|? = ;i Jijwiwj describes an ellipsoid with semi-axes A



Natural actor-critic (NAC)

Fw)0=Vup(w) &8 =F(w) " Vup(w) = Vup(w)
Learning rule (Kakade, 2001/2)

Wil = we + Bib;

Remarks:

o Natural gradient (S. Amari: Natural gradient works efficiently
in learning, NC 10, 251-276, 1998)

e Examples by Bagnell and Schneider (2003) and Jan Peters
(2003, 2008)



Kakade's Example
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Three right curves: standard gradient, three left curves: natural
gradient

Policy 7 (a|x; w) ~ exp (w151x2 + wzszx)

Starting conditions: wis; = wasp = —0.8



Kakade's Example
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Left: average reward for the policy
7 (2= 1]s;w) ~ exp (w) / (1 + exp (w))

Lower plot represents the beginning of the upper plot (different
scales!): dashed: natural gradient, solid: standard gradient.

Right: Movement in the parameter space (axes are actually w;!)



@ A systematic approach for continuous actions and space (time
is discrete)

@ Policy gradient as maximisation of the averaged state-action
value

o Natural gradient leads to a very simple form
@ Model-free reinforcement learning
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