
RL 7: The Bellman Equation

Michael Herrmann

University of Edinburgh, School of Informatics

02/02/2016

Last time: Markovian Decision Problems (MDPs)

Markovian property

P(Xt+1 = j |Xt = i ,Xt−1 =kt−1, . . . ,X0 =k0)=P(Xt+1 = j |Xt = i)

finite-state Markov chain is characterised by transition matrix
{pij} and initial probabilities $ = P {X0 = i}
stationary pij = P (Xt+1 = j |Xt = i) = P (X1 = j |X0 = i)

j is accessible from i if p(n)
ij > 0 (for some n)

if j is accessible from i and v.v., then i and j communicate
irreducible if every pair of states communicate

if
∑∞

n=1 f (n)ii = 1 and
∑∞

n=1 n f (n)ij <∞ then positive recurrent
positive recurrent states that are aperiodic are ergodic

if irreducible and ergodic limn→∞ p(n)
ij = π∗j (eVec zu eVal 1)

E (C) =
∑M

i=0 Cikπ
∗
i

Change {pij} such that E (C) is minimal (or maximal)

02/02/2015 Michael Herrmann RL 6

The reward hypothesis (Sutton)

That all of what we mean by goals and purposes can be well
thought of as the maximisation of the cumulative sum of a
received scalar signal (reward)

02/02/2015 Michael Herrmann RL 6

Optimality in Physics

Fermat’s principle:
principle of least time

Huygens–Fresnel principle:
A wave front consists of
elementary waves

Brachistochrone curve
(Johann Bernoulli, 1696)
⇒ Calculus of variations

02/02/2015 Michael Herrmann RL 6

Optimal Control

x : state
V : value

C : scalar cost
D: value of final state

u: control
T : total time

Value (or energy, time, action) as function of starting state

V (x(0), 0) = min
u

{∫ T

0
C [x(t), u(t)] dt + D[x(T)]

}
Hamilton-Jacobi-Bellman equation

V̇ (x , t) + min
u
{∇xV (x , t) · F (x , u) + C (x , u)} = 0

with ẋ(t) = F [x(t), u(t)] determining the evolution of the state

From wikipedia

02/02/2015 Michael Herrmann RL 6

Bellman Optimality

Bellman’s Principle of Optimality: An optimal policy has the
property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard
to the state resulting from the first decision. (1957)

Formulate learning problem such that the principle can be applied.

02/02/2015 Michael Herrmann RL 6

Markov reward processValue functions: Definition

Policy π : S → A or a ∼ π (·|s) (means: P (at = a|st) = π (a|st))

Value function V π : S → R

V π (s) = E

[∞∑
t=0

γtrt+1|s0 = s

]

assuming that the initial probability $0 (s0) > 0

This is assuming an MDP with fixed π:
(
S,Pπ, $0) which is

extended to
(
S,Pπ, $0,R

)
. The latter is a Markov reward process

which arises naturally by assigning a reward distribution R (·|s) to
each state s or to each state-action pair according to

Rπ (r |s) =
∑
a∈A

π (a|s) R (r |s, a)

[$ is called “script-pi” and is used to avoid confusion with the policy π]

02/02/2015 Michael Herrmann RL 6

Value functions for state-action pairs

Policy π : S → A or a ∼ π (·|s)

Value function Qπ : S ×A → R

Qπ (s, a) = E

[∞∑
t=0

γtrt+1|s0 = s, a0 = a

]

assuming that the initial probability $0 (s0) > 0 and that
π (s0) = a0 (deterministic) or π (s0, a0) > 0 (stochastic).

First action a0 is applied now, later actions are chosen by π.

02/02/2015 Michael Herrmann RL 6

Optimal value functions

For MDPs an optimal policy can be defined as (s ∈ S, policy π)

V ∗ (s) = sup
π

V π (s)

Analogously, for state-action pairs we have (s ∈ S and a ∈ A)

V ∗ (s) = sup
a∈A

Q∗(s, a)

Q∗ (s, a) = r (s, a) + γ
∑
u∈S

Pa=π(s) (s, u) V ∗ (u)

02/02/2015 Michael Herrmann RL 6

Optimality of Q

Suppose π satisfies∑
a∈A

π (a|s)Q∗ (s, a) = V ∗ (s)

for all s ∈ S. Then π is optimal.

Namely, π (·|s) selects the action(s) that maximise(s) Q∗ (s, ·).

So, optimality implies greediness and knowing Q∗ (s, a) allows us to
act optimally.

Analogously, knowing V ∗, r and P suffices to act optimally.

02/02/2015 Michael Herrmann RL 6

Dynamic programming for solving MDPs
Value iteration

At each time step the algorithm causes a change of the estimate of
the value function, we express this by the operator T :

Vt+1 = T Vt

Can we expect global convergence (starting from arbitrary V0)?

Similarly, for state-action values functions

Qt+1 = T Qt

Once Vt (or Qt) is close to the optimalV ∗ (or Q∗) then the greedy
policy is close to optimal, more specifically, using the relation
between V and Qt :

Suppose Q is fixed and π is the greedy policy w.r.t. Q. Then

V π (s) ≥ V ∗ (s)− 2
1− γ

‖Q −Q∗‖∞

Singh and Yee, 1994
02/02/2015 Michael Herrmann RL 6

Bellman Equations for deterministic policies in an MDP

How to find the value of a policy? Requiring consistent V :

V π (s) = r (s, π (s)) + γ
∑
u∈S

P (s, π (s) , u) V π (u)

This is the Bellman equation T for V π.

Define the Bellman operator for π as T π : RS → RS (maps value
functions to value functions)

(T πV) (s) = r (s, π (s)) + γ
∑
u∈S

P (s, π (s) , u) V (u)

Then naturally,
T πV π = V π

which is nothing but a compact formulation of the equation on top
of this slide. This is a linear equation in V π and T π.

If 0 < γ < 1 then T π is a contraction w.r.t. the maximum norm.

02/02/2015 Michael Herrmann RL 6

Bellman optimality equations

How to characterise the optimal policy? Use the Bellman optimality
principle.

V ∗ (s) = sup
a∈A

(
r (s, a) + γ

∑
u∈S

P (s, a, u) V ∗ (u)

)

Bellman optimality operator T ∗ : RS → RS

(T ∗V) (s) = sup
a∈A

(
r (s, a) + γ

∑
u∈S

P (s, a, u) V (u)

)
Then naturally,

T ∗V ∗ = V ∗

which is nothing but a compact formulation of the equation on top
of this slide.

If 0 < γ < 1 then T ∗ is a contraction w.r.t. the maximum norm.

02/02/2015 Michael Herrmann RL 6

Bellman Operators for state-action value functions

T π : RS×A → RS×A, T ∗ : RS×A → RS×A

T πQ (s, a) = r (s, a) + γ
∑
u∈S

P (s, a, u)Q (u, π (s))

T ∗Q (s, a) = r (s, a) + γ
∑
u∈S

P (s, a, u) sup
b∈A
Q (u, b)

T π is a linear operator, but T ∗ is not. Both, T π and T ∗ are
contractions w.r.t. the maximum norm.

Defining Q (s, π (s)) = Qπ we have T πQπ = Qπ and Qπ is the
unique solution of this equation. Similarly, we have T ∗Q∗ = Q∗
and Q∗ is the unique solution of this equation.

02/02/2015 Michael Herrmann RL 6

Dynamic programming for solving MDPs
Policy iteration

Fix an arbitrary initial policy π0.

Policy evaluation: At iteration t > 0 compute the action-value
function underlying πt

Policy improvement: Given Qπt define πt+1 as the policy that is
greedy w.r.t. Qπt .

πt+1 gives rise to Qπt+1 : continue

Works similar but not exactly as value iteration (later)

02/02/2015 Michael Herrmann RL 6

Summary on Bellman equations

The Bellman equation is the Bellman optimality equation. It
characterises the optimal strategy based on the Bellman
optimality principle
It uses the transition probabilities
Outlook: Use the actual process to estimate the transition
probabilities or to directly sample the value function (or the
state-action value function)
Next: value prediction

02/02/2015 Michael Herrmann RL 6

Value prediction

The Bellman (optimality) equation characterises an optimal
value function
In general this equation is not solvable
Solution is possible by iterative schemes
Need to take into account the embeddedness of the agent

02/02/2015 Michael Herrmann RL 6

Temporal Difference (TD) Learning for Value Prediction

Ideal value function

Vt =
∞∑
τ=t

γτ−trτ = rt + γrt+1 + γ2rt+2 + · · ·

= rt + γ (rt+1 + γrt+2 + · · ·)

= rt + γ

∞∑
τ=t+1

γτ−(t+1)rτ

= rt + γVt+1

Real value function is based on estimates of Vt and Vt+1, which
may not obey this relation. Even if the estimates V̂t and V̂t+1 are
far from their true values we can at least require consistency, i.e.
minimise the absolute value of the δ error (δ for διαϕoρά)

δt+1 = rt + γV̂t+1 − V̂t

02/02/2015 Michael Herrmann RL 6

The simplest TD algorithm

Let V̂t be the t-th iterate of a learning rule for estimating the value
function V .

Let st the state of the system at time step t.

δt+1 = rt + γV̂t (st+1)− V̂t (st)

V̂t+1 =

{
V̂t (s) + ηδt+1 if s = st
V̂t (s) otherwise

V̂t+1 (st) = V̂t (st) + ηδt+1 = V̂t (st) + η
(
rt + γV̂t (st+1)− V̂t (st)

)
= (1− η) V̂t (st) + η

(
rt + γV̂t (st+1)

)
The update of the estimate V̂ is an exponential average over the
cumulative expected reward.

02/02/2015 Michael Herrmann RL 6

TD(0) Algorithm

Initialise η and γ and execute after each state transition

function TD0(s,r ,s1,V) {

δ := r + γ ∗ V [s1]− V [s];

V [s] := V [s] + η ∗ δ;

return V ;

}

02/02/2015 Michael Herrmann RL 6

Remarks on the TD(0) Algorithm

If the algorithm converges it must converge to a value function
where the expected temporal differences are zero for all states.
This state satisfies the Bellman optimality equation.
The continuous version of the algorithm can be shown to be
globally asymptotically stable
TD(0) is a stochastic approximation algorithm. If the system
is ergodic and the learning rate is appropriately decreased, it
behaves like the continuous version.

02/02/2015 Michael Herrmann RL 6

Back to optimality in physics

Classical mathematics: Dirichlet problem (D. Hilbert, 1900)

Given function f that has values everywhere on the boundary
of a region in Rn

Is there a unique continuous function u twice continuously
differentiable in the interior and continuous on the boundary,
such that u is harmonic in the interior and u = f on boundary?

What is the shape
of a soap bubble in
a warped ring?

02/02/2015 Michael Herrmann RL 6

TD vs. MC

Any chance to find a good compromise between the two approaches?
02/02/2015 Michael Herrmann RL 6

Eligibility Traces for TD

TD learning can often be accelerated by the addition of
eligibility traces.
TD≡TD(0) updates the value function only for the
immediately preceding state
But rt+1 provides useful information for learning earlier
predictions as well
Extend TD by eligibility traces:

Short-term memory of many previous state that are updated
(though to a lesser extend the farther they are back)
Eligibility traces are usually implemented by an exponentially
decaying memory trace, with decay parameter λ.
TD should thus be more specifically TD(λ) with 0 ≤ λ ≤ 1
Eligibility extends less wide into the past than the time horizon
towards the future that is controlled by the discount rate.
TD(1) updates all the preceding predictions equally (for γ = 1)

www.scholarpedia.org/article/Temporal_difference_learning

02/02/2015 Michael Herrmann RL 6

TD(λ) [i.e. with eligibility traces]

TD(0):

V̂t+1 (s) =

{
V̂t (s) + ηδt+1 if s = st
V̂t (s) otherwise

TD(λ):

V̂t+1 (s) = V̂t (s) + ηδt+1et+1(s)

where e is a (replacing) eligibility trace with parameter[s] λ [and γ]

i.e. the value of all recently visited states is changed into the same
direction.

λ is called trace decay parameter

1-D maze example is solved essentially when the goal was found
once (it may take a bit more time to full convergence). Homework:
Test this numerically!

02/02/2015 Michael Herrmann RL 6

Eligibility Traces

TD(λ): Unification of TD (update only value of previous state) and
MC (update all states since start) using eligibility traces

Accumulating eligibility trace (e.g. in certain dynamical problems)

et+1 (s) =

{
γλet (s) + 1 if s = st
γλet (s) if s 6= st

Replacing eligibility trace (e.g. in a maze)

et+1 (s) =

{
1 if s = st
γλet (s) if s 6= st

S.P. Singh & R.S. Sutton. Reinforcement learning with replacing eligibility traces. Rec. Adv. in RL 1996

02/02/2015 Michael Herrmann RL 6

Example: Driving home

02/02/2015 Michael Herrmann RL 6

Eligibility Traces

...

Changes when using TD with eligibility traces.

(This illustration is not to scale and does not reflect the accumulation of the changes)

02/02/2015 Michael Herrmann RL 6

Comparison: MC vs. TD

Expected time (= cost = neg. reward) to arrive home:

Changes recommended by MC
(once at the end of episode)

Changes recommended by TD
(updating one value per step)

02/02/2015 Michael Herrmann RL 6

Summary

TD(λ) provides efficient estimates of the value function in
Markovian reward processes
It generalises Monte Carlo methods, but can be used as well in
non-episodic tasks
Appropriate tuning of λ (and γ) can lead to a significantly
faster convergence than both Monte Carlo and TD(0).
Next time: MC and DP and TD(λ)

02/02/2015 Michael Herrmann RL 6

Literature

Szepesvári, C. (2010). Algorithms for reinforcement learning.
Synthesis Lectures on Artificial Intelligence and Machine Learning
4:1, 1-103. (Chapter 1)

Giegerich, R., Meyer, C., & Steffen, P. (2002). Towards A
Discipline of Dynamic Programming. GI Jahrestagung 19, 3-44.
(make sure to read sections 1 and 2)

02/02/2015 Michael Herrmann RL 6

