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Last time: Reinforcement Learning Algorithms

Determine (and maximise) expected (discounted|relative) reward

R-learning (off-policy): at = argmaxaQ (st , a) (plus exploration)

Qt+1(st , at) = (1− η)Qt(st , at) + η
(
rt+1 − ρt + max

a
Qt(st+1, a)

)
ρt+1 = (1−α) ρt +α

(
rt+1+max

a
Qt(st+1, at+1)−max

a
Qt+1(st , a)

)
Q-learning (off-policy): at = argmaxaQ (st , a) (plus exploration)

Qt+1 (st , at) = (1− η)Qt (st , at) + η
(
rt+1 + γmax

a
Qt (st+1, a)

)
SARSA (on-policy): a ∼ π (st , at)

Qt+1 (st , at) = (1− η)Qt (st , at) + η (rt+1 + γQt (st+1, at+1))

TD(0) (on-policy): (value estimation)

V̂t+1 (st) = V̂t (st) + ηδt+1=(1− η) V̂t (st) + η
(
rt + γV̂t (st+1)

)
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MDPs: Main points

Markov Chains will be used as model of the state dynamics in
a RL problem
The Markov property implies that predictions for the future
based on the present state are just as good as predictions
based on the full history
Not all state dynamices are Markov (why not?), but often
Markovianity is a reasonable approximation
If the intrinsic state dynamics is Markov, Markovianity is
conserved if actions follow a state-dependent policy
If for a fixed policy the state dynamics is a Markov chain, then
for a different fixed policy it is a (generally) different Markov
chain
On-policy reinforcement learning algorithms are often based
MDPs in a strict sense (Q-learning is off-policy and therefore
not a very good example)
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Stochastic Processes

A stochastic process is an indexed collection of random
variables {Xt}

e.g. time series of weekly demands for a product

Discrete case: At a particular time t, labelled by integers,
system is found in exactly one of a finite number of mutually
exclusive and exhaustive categories or states, labelled by
integers, too
Process could be embedded, i.e. time points correspond to
occurrence of specific events
Random variables may depend on others, e.g.,

Xt+1 =

{
Yt+1 if Xt < 0
Xt if Xt ≥ 0

or Xt+1 =
∑K

k=0 αkXt−k + ξt with ξt ∼ N
(
µ, σ2)
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An Example of a Markov Chain Model

Consider the following application: machine maintenance
A factory has a machine that deteriorates rapidly in quality
and output and is inspected periodically, e.g., monthly
Inspection declares the machine to be in four possible states:

0: Good as new
1: Operable, minor deterioration
2: Operable, major deterioration
3: Inoperable

Let Xt denote this observed state

evolves according to some “law of motion”, so it is a stochastic
process
Furthermore, assume it is a finite state Markov chain
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Towards an Markov Decision Model

Transition matrix is based on the following:

states 0 1 2 3
0 0 7/8 1/16 1/16
1 0 3/4 1/8 1/8
2 0 0 1/2 1/2
3 0 0 0 1

Once the machine goes inoperable, it stays there
If no repairs, eventually, it reaches this state which is
absorbing!

Repair is an action – a very simple maintenance policy
e.g., move machine from state 3 to state 0
This changes the transition probabilities and leaves us with a
different Markov chain (see below)
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Let’s first look at Markov Chains

The stochastic process is said to have a Markovian property if

P(Xt+1 = j |Xt = i ,Xt−1 =kt−1, . . . ,X1 =k1,X0 =k0)=P(Xt+1 = j |Xt = i)

for t = 0, 1, . . . and every sequence i , j , k0, . . . , kt−1

Markovian probability means that the conditional probability of a
future event given any past events and current state, is independent
of past states and depends only on present

The conditional probabilities are transition probabilities,

P (Xt+1 = j |Xt = i)

These are stationary if time invariant. Then we can write

pij = P (Xt+1 = j |Xt = i) = P (X1 = j |X0 = i)
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Markov Chains

A stochastic process is a finite-state Markov chain if it has

a finite number of states s ∈ S
the Markovian property
stationary transition probabilities pij for all i , j
a set of initial probabilities π0

i = P {X0 = i} for all i

n-step transition probabilities (looking forward in time)

p(n)
ij = P (Xt+n = j |Xt = i) = P (Xn = j |X0 = i)

One can write a transition matrix

P(n) =

 p(n)
00 · · · p(n)

0M
...

. . .
...

p(n)
M0 · · · p(n)

MM


Andrey Markov
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Markov Chains

2-step transition probabilities can be obtained from 1-step
transition probabilities

p(2)
ij =

M∑
k=1

pikpkj , ∀i , j

n-step transition probabilities can be obtained from 1-step
transition probabilities recursively (Chapman-Kolmogorov)∗

p(n)
ij =

M∑
k=1

p(v)
ik p(n−v)

kj , ∀i , j , n; 0 ≤ v ≤ n

We can get this via the matrix, too

P(n) = P · · ·P︸ ︷︷ ︸
n times

= Pn = Pn−vPv , 0 ≤ v ≤ n

∗ For consistency we define p(0) = I (unit matrix).
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Markov Chains: First Passage Times

Number of transitions to go from i to j for the first time
First Passage Times are random variables ⇒ mean FPT etc.
If i = j , this is the recurrence time

n-step recursive relationship for first passage probability

f (1)ij = p(1)
ij = pij

f (2)ij = p(2)
ij − f (1)ij pjj

...
f (n)ij = p(n)

ij − f (1)ij p(n−1)
jj − f (2)ij p(n−2)

jj − · · · − f (n−1)
ij pjj

For fixed i and j , f (n)ij ≥ 0 and it holds that
∑∞

n=1 f (n)ij ≤ 1∑∞
n=1 f (n)ii = 1 implies a recurrent state; absorbing if f (1)ii = 1

mean FPT:
∑∞

n=1 n f (n)ij

Positive recurrence: State is recurrent and has a mFPT<∞
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Markov Chains: Classification of States

State j is accessible from i if p(n)
ij > 0 (for some n)

If state j is accessible from i and vice versa, the two states are
said to communicate
As a result of communication, one may partition the general
Markov chain into states in disjoint classes

MC is irreducible if there is only one class

If the MC can only visit the state at integer multiples of t, we
call it periodic
Positive recurrent states that are aperiodic are called ergodic
states
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Markov Chains: Long-Run Properties

Remember the inventory example? Interestingly, probability of
being in state j (after, e.g., 8 weeks) appears to be independent of
the initial level π0 of inventory.

For an irreducible ergodic Markov chain, one has limiting probability

lim
n→∞

p(n)
ij = π∗j

i.e. the limit for each element pij does not depend on i .

π∗j =
M∑
i=1

π∗i pij ∀j = 1, . . . ,M

π∗ = (π∗1, . . . , π
∗
M) is an eigenvector of the matrix P = (pij).

Perron-Frobenius theorem: Matrices with positive entries have a
unique largest eigenvalue. For a probability matrix this EV is 1.

Reciprocal of π∗j gives the recurrence time mjj
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Markov Chains: Expected Average Cost

Sometimes aperiodic chain is a strong assumption. If we relax it,
the limiting probability needs a slightly different definition:

lim
n→∞

1
n

n∑
k=1

p(k)
ij = π∗j

Suppose you incur a cost C (xk) at time k which depends only on
the state x = xk that is assumed at this time. Then, using the
above, you can derive the long-run expected average over unit time
as

lim
n→∞

{
E

[
1
n

n∑
k=1

C (Xk)

]}
=

M∑
j=1

Cjπ
∗
j ,

where Cj = C (Xk) if Xk = j . Can be more elaborate in general,
e.g. if cost function depends also on transitions.
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Markov Decision Model

States in the machine maintenance example

0: Good as new
1: Operable, minor deterioration
2: Operable, major deterioration
3: Inoperable

Transition matrix was the following:

states 0 1 2 3
0 0 7/8 1/16 1/16
1 0 3/4 1/8 1/8
2 0 0 1/2 1/2
3 0 0 0 1
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Markov Decision Model

There are costs as system evolves:

State 0: cost 0
State 1: cost 1000
State 2: cost 3000

Replacement cost, taking state 3 to 0, is 4000 (and lost
production of 2000), so cost = 6000
The modified transition probabilities are:

states 0 1 2 3
0 0 7/8 1/16 1/16
1 0 3/4 1/8 1/8
2 0 0 1/2 1/2
3 1 0 0 0
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Markov Decision Model

What is the average cost of this maintenance policy?
Compute the steady state probabilities:

π∗0 =
2
13
, π∗1 =

7
13
, π∗2 =

2
13
, π∗3 =

2
13

(Long run) expected average cost per unit of time

0π∗0 + 1000π∗1 + 3000π∗2 + 6000π∗3 =
25000
13

= 1923

Cost for the model without any actions? Eventually all
machines are broken (state 3 is absorbing), but there is no cost
for replacement, i.e. only for lost production (2000). Note
that in this case the system is not ergodic.
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Markov Decision Model

Consider a slightly more elaborate policy:

Repair when inoperable or replace when needing major repairs

Permit one more thing: overhaul

Go back to minor repairs state (1) for the next time step
Not possible if truly inoperable, but can go from major to
minor

Transition matrix now changes a little bit
Key point about the system behaviour. It evolves according to

“Laws of motion”
Sequence of decisions made (actions from {1:none, 2:overhaul,
3:replace})

Stochastic process is now defined in terms of Xt and ∆t

Policy R is a rule for making decisions
Could use all history, although popular choice is (current)
state-based
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Markov Decision Model

Many policies are possible how to use the actions (1: none,
2: overhaul, 3: replace) in the states 0, 1, 2, 3:

Policies dR (0) dR (1) dR (2) dR (3)

Ra 1 1 1 3
Rb 1 1 2 3
Rc 1 1 3 3
Rd 1 3 3 3

Each policy defines a transition matrix, e.g., for Rb

states 0 1 2 3
0 0 7/8 1/16 1/16
1 0 3/4 1/8 1/8
2 0 1 0 0
3 1 0 0 0

Which policy is best? Need costs. . . .
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Markov Decision Model

Cik= expected cost incurred during next transition if system is
in state i and decision k is made

state|decision 1 2 3
0 0 4000 6000
1 1000 4000 6000
2 3000 4000 6000
3 ∞ ∞ 6000

The long run average expected cost for each policy may be
computed using

E (C ) =
M∑
i=0

Cikπ
∗
i

Rb is best (homework: check!)
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Extensions

Heuristic Search

Dynamic Programming: AO*, LAO*, RTDP, . . .

Factored MDPs

add planning graph style heuristics
use goal regression to generalise better

Hierarchical MDPs

hierarchy of sub-tasks and/or actions to scale better

Reinforcement Learning
Partially Observable Markov Decision Processes

noisy sensors, partially observable environment, popular in
robotics

adapted from Mausam: Markov decision problems, Ch. 17
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RL and Markov Decision Processes ... as used in Sutton & Barto

Agent and environment interact at discrete time steps: t = 0, 1, 2,

Agent observes state at step t: st ∈ S

Produces action at step t : at ∈ A(st)

gets resulting reward: rt+1 ∈ R

and resulting next state st+1
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On the Degree of Abstraction

Actions can be low level (e.g., voltages to motors), or high
level (e.g., accept a job offer), “mental” (e.g., shift in focus of
attention), etc.
States can be low-level “sensations”, or they can be abstract,
symbolic, based on memory, or subjective (e.g., the state of
being “surprised” or “lost”).
An RL agent is not like a whole animal or robot.
Reward computation is in the agent’s environment because the
agent cannot change it arbitrarily.
The environment is not necessarily unknown to the agent, only
incompletely controllable

29/01/2016 Michael Herrmann RL 4



The Agent Learns a Policy

Policy at step t, πt :

a mapping from states to action probabilities πt (s, a):
probability that at = a when st = s

If the policy does not change, the problem can be seen as an
MDP.
Roughly, the agent’s goal is to get as much reward as it can
over the long run
Reinforcement learning methods specify how the agent
changes its policy as a result of experience, i.e. RL aims at
changing the transition probabilities such that a better MPD
(with lower cost/higher expected reward) is reached.
Problem: We only know how to solve fixed MDP in the
asymptotic case
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Goals and Rewards

Is a scalar reward signal an adequate notion of a goal? —
maybe not, but it is surprisingly flexible
A goal should specify what we want to achieve, not how we
want to achieve it
A goal must be outside the agent’s direct control — thus
outside the agent
The agent must be able to measure success:

explicitly;
frequently during its lifespan

29/01/2016 Michael Herrmann RL 4



The reward hypothesis (Sutton)

That all of what we mean by goals and purposes can be well
thought of as the maximisation of the cumulative sum of a
received scalar signal (reward)
A sort of null hypothesis, time scales, stopping criteria needed
Probably ultimately wrong, but so simple we have to disprove
it before considering anything more complicated
MD problems are solved once optimal values are known
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Estimation problems

In the machine management example, costs where
deterministic. In general we have to estimate the stochastic
cost in order to find for each state their averages (and
variance)
For a fixed policy, the agent has to visit all states (irreducibility
and ergodicity!) in order to sample the stationary probability
of the MDP
The agent has to change its policy such that the MDP
improves towards an optimal MDP
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Where now?

A fixed policy in a MDP transforms a Markov Chain into a
Markov Chain with a (generally) different transition matrix
If the MDP is known, solve the EV-problem, calculate cost for
the eigenvector
Dijkstra’s algorithm: visit all states, keep track of distance to
starting state
Assumptions were

MDP with known transition probabilities (deterministic for
Dijkstra)
(random) immediate cost/reward (lengths for Dijkstra)
global information is available

If these assumptions do not hold, RL is an option.
On-policy reinforcement learning algorithms are often based on
MDPs in a strict sense (Q-learning is not the best example for
MDPs)
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Next time: Optimality

Bellman’s Principle of Optimality: An optimal policy has the
property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard
to the state resulting from the first decision. (1957)
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