
RL 2: Multi-Armed Bandits (MAB)

Michael Herrmann

University of Edinburgh, School of Informatics

15/01/2016

Example: Inventory Control

Objective: Minimise total inventory cost
Decisions:

How much to order?
When to order?

15/01/2016 Michael Herrmann RL 2

Components of Total Cost

1 Cost of items
2 Cost of ordering
3 Cost of carrying or holding inventory
4 Cost of stockouts
5 Cost of safety stock (extra inventory held to help avoid

stockouts)

15/01/2016 Michael Herrmann RL 2

The Economic Order Quantity Model - How Much to Order?

Assumptions

1 Demand is known and constant
2 Lead time is known and constant
3 Receipt of inventory is instantaneous
4 Quantity discounts are not available
5 Variable costs are limited to: ordering cost and carrying (or

holding) cost
6 If orders are placed at the right time, stockouts can be avoided

15/01/2016 Michael Herrmann RL 2

Inventory Level Over Time Based on EOQ Assumptions

Economic order quantity, Ford W. Harris, 1913

15/01/2016 Michael Herrmann RL 2

EOQ Model Total Cost

C (Q) =
price
item

D +Co
D
Q

+Cc
Q
2

dC (Q)

dQ
= −Co

D
Q2 +

Cc

2
!

= 0

Q∗ =

√
2DCo

Cc

D: demand, Co : cost per order, Cc : cost per item, Q: quantity

Optimal order quantity (Q*): (Carrying cost)’ = − (Ordering cost)’

15/01/2016 Michael Herrmann RL 2

Realistically, how much to order
If these assumptions didn’t hold?

Demand is known and constant
Lead time (latency) is known and constant
Receipt of inventory is instantaneous
Quantity discounts are not available
Variable costs are limited to: ordering cost and carrying (or
holding) cost
If orders are placed at right time, stockouts can be avoided

The result may require a more detailed stochastic
optimisation.

15/01/2016 Michael Herrmann RL 2

Properties of RL learning tasks

Does not assume that you know the model of the environment
Associativity: Value of an action depends on state
Active learning: Environment’s response affects our subsequent
actions and thus future responses
Delayed reward: We find out the effects of our actions later
Credit assignment problem: Upon receiving rewards, which
actions were responsible for the rewards?

15/01/2016 Michael Herrmann RL 2

Relation to Metaheuristic Optimisation (MO)

“Natural computing” including algorithms such as GA, ES, DE,
PSO, or ACO
For example, genetic algorithms (GA) maximise a fitness
function by selecting, mutating and reproducing certain
individuals in a population
The individuals are described as strings over an alphabet, e.g.
{G,A,T,C}
The gradient of the fitness function is not known
The population is a sample of points in the space of all strings

15/01/2016 Michael Herrmann RL 2

Difference between MO and RL

RL MO
representation usually a single agent

that must be restarted
population

learning steps rewards is received after
each action

fitness is evaluated in
each generation

dynamics Markovian state trans-
itions

population moves in
configuration space

global search trial and error guided by
earlier experiences

trial and error, may be
guided by correlations

local search policy gradient hill climbing

Both are stochastic optimisation algorithms. Both can find their
resp. global optimum under certain (quite artificial) conditions.

Note that many combinations are possible, e.g. collective RL or
MO of the hardware of a robot that learns by RL

15/01/2016 Michael Herrmann RL 2

Chapter 2: Multi-Armed Bandits (MAB)

A very simple model of reinforcement learning
Focus only on action selection (one action at a time)
Playground for study of the exploration-exploitation dilemma
1000s of publications and numerous applications

15/01/2016 Michael Herrmann RL 2

Multi-Armed Bandits (Herbert Robbins, 1952)

N possible actions (one per machine = arm)

Selecting action at leads to an
immediate reward,
at ∈ {1, . . . ,N}, t = 1, . . . ,T
Reward depends only on
present action and is
characterised by (unknown)
distribution which is fixed for
each action, rt ∼ Pat (r)

You can play for some period of time and you want to
maximise average reward (utility)
Simplifying assumption: No context. Later, we want to solve
contextual problems.

Which is the best action/arm/machine?

What sequence of actions to take to find out?
15/01/2016 Michael Herrmann RL 2

Numerous Applications!

15/01/2016 Michael Herrmann RL 2

Applications in Real Life: Decision Making

application
“bandits”
game
clinical
trials
advertisement
routing
...

action
arm
move
administered
treatment
select ad
network link
...

reward
tokens
win
fraction of patients
cured
click on ad
transmission delay
...

Multi-armed bandit. Adapted from Wikipedia

15/01/2016 Michael Herrmann RL 2

Multi-Armed Bandits

Assume mean and variance of the arm’s reward probabilities are

mean value: 0.5 0.2 0.8 0.4 0.2

std. dev.: 0.3 0.1 0.2 0.1 0.2

What action to choose next given rewards for actions 1, 3 and 2?
15/01/2016 Michael Herrmann RL 2

N-Armed Bandit Problem

Choose repeatedly one of N actions; each is called a play
After playing at , you get a reward rt
Try to estimate the action value, i.e. the expected reward
conditioned on the chosen action

E {r |at} = Q (at)

Objective is to maximise the (expected) reward, e.g.

in the long term, asymptotically,
over a given number of plays,
for non-stationary rewards

To solve the N-armed bandit problem, you must explore a
variety of actions (in order to estimate their values) and
exploit the best of them (in order to maximise reward)

15/01/2016 Michael Herrmann RL 2

Exploration-Exploitation Dilemma

Suppose, at time t you have arrived at reasonable estimates
Q̂t (a) of the true action values Q (a), a ∈ A, |A| = N, i.e.

Q̂t (a) ≈ Q (a)

The greedy action at time t is a∗t

a∗t = argmax
a∈A

Q̂t (a)

“Greedy” means exploitation only, i.e.

at = a∗t =⇒ exploitation
at 6= a∗t =⇒ exploration

Dilemma:
You can’t exploit all the time; you can’t explore all the time
You should never stop exploring; but you may reduce exploring

The problem involves “a sequence of decisions, each of which is
based on more information than its predecessors” (Gittins)
15/01/2016 Michael Herrmann RL 2

Action-Value Methods

Methods that adapt action-value estimates and nothing else, e.g.:
suppose by the t-th play, action a had been chosen ka times,
producing rewards r1, r2 , . . . , rka , then

Q̂t (a) =
r1 + r2 + · · ·+ rka

ka

The sample average is an estimator which approaches the reward
expectation

lim
ka→∞

Q̂ka (a) = Q (a)∑
a

ka = t

Requires to choose each action infinitely often.

15/01/2016 Michael Herrmann RL 2

The greedy action selection strategy

Assume you have sampled all actions equally over t plays

Greedy action selection : a∗t = argmaxa Q̂t (a)

Why might this be inefficient?

Either t is large: you have spend a lot on exploration
or t is small: estimation errors are large

Any compromises, that can be used for online estimation of the
reward distribution for the good actions from a few samples?

15/01/2016 Michael Herrmann RL 2

ε-Greedy Action Selection

Given the greedy action selection:

a∗t = argmax
a

Q̂t (a)

we define ε-greedy:

at =

{
a∗t with probability 1− ε

random action with probability ε

. . . a simple way to balance exploration and exploitation
Greedy1 is ε-greedy for ε = 0

1Here is an initialisation problem involved. It may be advisable to try out
each action a few times before continuing greedy or ε-greedy.
15/01/2016 Michael Herrmann RL 2

Worked Example: 10-Armed Testbed

N = 10 possible actions
Q (a) are chosen randomly from a normal distribution N (0, 1)

Rewards rt are also normal N (Q (at) , 1)

1000 plays with fixed Q (a)

Average the results over 2000 trials, i.e. average over different
random choices of Q (a)

see Sutton and Barto (1998)

15/01/2016 Michael Herrmann RL 2

ε-Greedy Methods on the 10-Armed Testbed

15/01/2016 Michael Herrmann RL 2

ε-Greedy Methods on the 10-Armed Testbed

What value of ε is optimal?
What would happen if we ran the experiment over ≥10,000
plays?
Can we do better than ε-greedy (even for the best possible ε)?

15/01/2016 Michael Herrmann RL 2

Soft-max Action Selection

Bias exploration towards promising actions
Soft-max action selection methods grade action probabilities
by estimated values
The most common soft-max uses a Gibbs (or Boltzmann)
distribution, i.e. chooses action a on play t with probability

eQ̂t(a)/τ∑N
b=1 eQ̂t(b)/τ

where τ is a “computational temperature”:

τ →∞: random, ∀a P (a) = 1
N , pure exploration

τ → 0: greedy, pure exploitation

15/01/2016 Michael Herrmann RL 2

Incremental Implementation

Sample average estimation method
The average of the first k rewards is (separately for each
action):

Q̂k =
r1 + r2 + · · ·+ rk

k
How to do this incrementally (without storing all the rewards)?
We could keep a running sum and count, or, equivalently:

Q̂k+1 = Q̂k +
1

k + 1

(
rk+1 − Q̂k

)
In words:

NewEstimate = OldEstimate + StepSize * [NewData – OldEstimate]

= (1-StepSize) * OldEstimate + StepSize * NewData

15/01/2016 Michael Herrmann RL 2

Tracking a Nonstationary Problem

Choosing Qk to be a sample average is appropriate in a
stationary problem, i.e., when none of the Q∗ (a) change over
time,
But not in a nonstationary problem
Better in the nonstationary case is to choose a constant
α ∈ (0, 1]

Qk+1 = Qk + α (rk+1 − Qk)

= (1− α) Qk + αrk+1

= (1− α)k Qo +
k∑

i=1

α (1− α)k−i ri

This is an exponential, recency-weighted average

15/01/2016 Michael Herrmann RL 2

Optimistic Initial Values

All methods so far depend on Q0 (a), i.e., they are biased

Encourage exploration: initialise the action values optimistically,

i.e., on the 10-armed testbed, use Q0 (a) = 5 ∀a

Does optimistic initialisation solve the exploration-exploitation
dilemma?
15/01/2016 Michael Herrmann RL 2

How to evaluate exploitation of an algorithm: Regret

Obtained reward depend on the reward distributions, so just
consider the difference from the maximally expected reward:
“regret”
This does not work in practice, but helps to evaluate strategies.

[Reward sum of optimal strategy] – [Sum of actual collected rewards]

ρ = Tµ∗ −
T∑

t=1

r̂t = Tµ∗ −
T∑

t=1

E [rit (t)]

µ∗ = max
a
µa

If the average regret per round goes to zero with probability 1,
asymptotically, we say the strategy has no-regret property
∼ guaranteed to converge to an optimal strategy
ε-greedy is sub-optimal (so has some regret). Why?

15/01/2016 Michael Herrmann RL 2

How to evaluate exploration: Confidence bounds

Estimate upper confidence bound Ût (k) for all action values
Estimate should obey Q(k) ≤ Q̂t(k) + Ût(k) with high prob.
Choose action by comparing Q̂t(k) + Ût(k) rather than Q̂t(k)

Try more often

rarely used action
actions with high-variance rewards tried more often
action with high estimates of average reward

Select action maximising Upper Confidence Bound (UCB)

kt = argmax
k∈A

Q̂t(k) + Ût(k)

In the course of time better estimates for rarely used actions
become available, confidence bounds become narrower,
estimates become better

15/01/2016 Michael Herrmann RL 2

Interval Estimation Procedure

Associate to each arm k a (1-α) reward mean upper band
Assume, e.g., rewards are normally distributed
Arm k is observed Nk times to yield standard deviation (in
addition to the empirical mean)
α-upper bound:

Ûα,Nk (k) =
σ̂√
Nk

c−1 (1− α)

c (z) =
1√
2π

∫ z

−∞
exp
(
−x2

2

)
dx

c is a Cumulative Distribution Function, c−1 is the inverse
function
If α is carefully controlled, could be made zero-regret strategy
In general, we don’t know

15/01/2016 Michael Herrmann RL 2

Interval Estimation (simple variant)

Attribute to each arm an “optimistic initial estimate” within a
certain confidence interval
Greedily choose arm with highest optimistic mean (upper
bound on confidence interval)
Infrequently observed arm will have over-valued reward mean,
leading to exploration
Frequent usage pushes optimistic estimate to true values

15/01/2016 Michael Herrmann RL 2

UCB Strategy (another variant)

Again, based on notion of an upper confidence bound but
more generally applicable
Algorithm:

Play each arm k once (k = 1, . . . ,K)
At time t > K , play the arm for which

r̄j (t) +

√
2 ln t
Tj ,t

is maximal, where Tj ,t is the number of times the arm j has been
played before time t.

15/01/2016 Michael Herrmann RL 2

UCB Strategy (based on Chernoff-Hoeffding Bound)

15/01/2016 Michael Herrmann RL 2

UCB Strategy – Behaviour

We will not try to prove the following result but I quote the final
result to tell you why UCB may be a desirable strategy – regret is
bounded.

15/01/2016 Michael Herrmann RL 2

Variation on SoftMax

It is possible to drive regret down by annealing τ

Exp3: Exponential weight algorithm for exploration and exploitation

Probability of choosing arm k at time t is

Pk (t) = (1− γ)
wk (t)∑k
j=1 wj (t)

+
γ

K

wj (t + 1) =

{
wj (t) exp

(
−γ rj (t)

Pj (t)K

)
if arm j is pulled at t

wj (t) otherwise

regret = O
(√

T K log (K)
)

Asymptotically regret-free, simpler but tends to be worse than UCB

Auer et al. 1998

15/01/2016 Michael Herrmann RL 2

Towards an optimal solution: The Gittins Index

Each arm delivers reward with a probability
This probability may change through time but only when arm
is pulled
Goal is to maximise discounted rewards – future is discounted
by an exponential discount factor γ < 1.
The structure of the problem is such that, all you need to do is
compute an “index” for each arm and play the one with the
highest index
Index is of the form (k ∈ A):

νk = sup
T>0

〈∑T
t=0 γ

tRk (t)
〉

〈∑T
t=0 γ

t
〉

15/01/2016 Michael Herrmann RL 2

Gittins Index – Intuition

Proving optimality is not within our scope
Stopping time: the point where you should ‘terminate’ bandit
Nice Property: Gittins index for any given bandit is
independent of expected outcome of all other bandits

Once you have a good arm, keep playing until there is a better
one
If you add/remove machines, computation does not really
change

BUT:

hard to compute, even when you know distributions
Exploration issues: Arms are not updated unless used2.

2In the restless bandit problem bandits can change even when not played.
15/01/2016 Michael Herrmann RL 2

Extending the MAB Model

In this lecture, we are in a single casino and the only decision
is to pull from a set of N arms
(except in the very last slides, not more than a single state!)

Next,3

What if there is more than one state?
So, in this state space, what is the effect of the distribution of
payout changing based on how you pull arms?
What happens if you only obtain a net reward corresponding
to a long sequence of arm pulls (at the end)?

3Many slides are adapted from web resources associated with Sutton and
Barto’s Reinforcement Learning book. The original design of the slides has
been prepared by Dr. Subramanian Ramamoorthy for his RL course.
15/01/2016 Michael Herrmann RL 2

Literature

http://en.wikipedia.org/wiki/Multi-armed_bandit4

H. Robbins (1952) Some aspects of the sequential design of
experiments. Bulletin of the American Mathematical Society
58(5): 527–535.
Cowan, Robin (July 1991) Tortoises and Hares: Choice among
technologies of unknown merit 101 (407). pp. 801–814.
P. Auer, N. Cesa-Bianchi, and P. Fischer (2002) Finite-time
analysis of the multiarmed bandit problem. Machine learning
47(2-3): 235-256.
B. Si, K. Pawelzik, and J. M. Herrmann (2004) Robot
exploration by subjectively maximizing objective information
gain. IEEE International Conference on Robotics and
Biomimetics, ROBIO 2004.

4Colour code: red – required reading; blue – recommended reading; black –
good to know.
15/01/2016 Michael Herrmann RL 2

