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Overview

Different types of learning in neural systems
Neural correlates of reward, value and action selection
Computational model provide interpretation of neural
processes as reinforcement learning by computation
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Reinforcement learning

Inspired by behaviorist psychology, reinforcement learning is an area
of machine learning in computer science, concerned with how an
agent ought to take actions in an environment so as to maximize
some notion of cumulative reward

en.wikipedia.org/wiki/Reinforcement_learning

Choose actions to move to states which are as good as possible
Quality of states is measured by the expected future
discounted reward
Expectation is taken w.r.t. to a fixed policy
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Behaviourism

has been disparaged for focusing exclusively on behaviour, refusing
to consider what was going on inside the head of the subject.

RL shares with behaviourism
its origins in animal learning theory
its focus on the interface with the environment
states and actions (or: stimuli and responses)
the idea that representations aren’t needed to define optimality

In the end it all comes down to the actions taken and the
states perceived.
RL of course is all about the algorithms and processes going
on inside the agent.
For example, RL (in ML) often considers the construction of
internal models of the environment within the agent, which is
far outside the scope of behaviourism

adapted from http://webdocs.cs.ualberta.ca/~sutton/RL-FAQ.html#behaviorism, emphasis changed
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Historical roots: The law of effect

“Connectionism” (E. Thorndike, 1911):

“satisfying state of affairs” leads to reinforcement of the
association between action and this state
“annoying state of affairs“ leads to weakening of the
association between action and this state

Remarks:

Consequences of behaviour determine what is learnt and what
is not
Thorndike introduced animal studies for verifying predictions
made from his theory. He also was among the first to apply
psychological principles in the area of teaching (active learning)
Connectionism implies modelling of higher brain functions as
the emergent processes of interconnected networks of simple
units. Thorndike provided the first working model.

http://www.lifecircles-inc.com/Learningtheories/behaviorism/Thorndike.html
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Learning

Psychology
Non-associative learning: single stimulus (habituation or
sensitisation)
Associative learning

two stimuli (classical conditioning):
A neutral stimulus causes a response. After learning, a
conditioned stimulus causes a similar response (unsupervised or
Pavlovian learning)
stimulus-response (operant conditioning, reinforcement
learning)

Machine learning
Unsupervised learning
Supervised learning
Reinforcement learning
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Classical condition: Rescorla & Wagner (1972)

Two assumptions:

learning is driven by error (formalise notion of surprise)
summations of predictors is linear

Change in value is proportional to the difference between actual
and predicted outcome

∆V n+1
X = αXβ(λ− Vtot)

∆VX change in strength of association of (CS) X

V n+1
X = V n

X + ∆V n+1
X

US: unconditioned stimulus, CS: conditioned stimulus

αX ∈ [0, 1] salience of CS, β ∈ [0, 1] rate parameter (given the US)

λ is the maximum conditioning possible (given the US)

Vtot is the total associative strength of all CS (= V n
X for one CS)

en.wikipedia.org/wiki/Rescorla%E2%80%93Wagner_model, www.princeton.edu/~yael/
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Instrumental conditioning

Thorndike “Animal intelligence:
an experimental study of the
associative processes in
animals” (PhD thesis)
Tested hungry cats in “puzzle
boxes”
Definition for learning: Time
to escape

Gradual learning curves, did not look like ‘insight’ but rather trial
and error

www.princeton.edu/~yael/
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Learning paradigms and the brain

Cerebellum: Supervised learning
Basal ganglia: Reinforcement learning
Cerebral cortex: Unsupervised learning

Doya, Kenji. What are the
computations of the cerebellum, the
basal ganglia and the cerebral cortex?.
Neural networks 12.7 (1999): 961-974.
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Supervised and unsupervised learning

Cerebellar circuit. GC, granule
cells; PC, Purkinje cells; CN, deep
cerebellar nuclei; IO, inferior olive;

Cortical circuits. P, pyramidal
neurons; S, spiny stellate
neurons; I, inh. interneurons;

◦ excitatory connection; • inhibitory connection

Doya, Kenji. Neural networks 12.7 (1999): 961-974.
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Basal ganglia: Reinforcement Learning

In contrast to cerebral cortex and
cerebellum, the basal ganglia are
structurally and functionally
heterogeneous, complex and only
partially understood.
Functions:

Selection and processing of
behavioural patterns
Suppression and inhibition of
undesired activation patterns
(Gating theory)

Responsible for diseases such as
Parkinson’s disease or Tourette
syndrome

GPe: globus pallidus external

GPi: globus pallidus internal

STN: subthalamic nucleus

SNc: substantia nigra compacta

SNr: substantia nigra reticulata

pathways: excitatory (glutamatergic, red),
inhibitory (GABAergic, blue), modulatory
(dopaminergic, magenta).
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Unsupervised, supervised and reinforcement learning

Diagram of neural circuit of the basal ganglia

SNc: substantia nigra, pars compacta; SNr: substantia nigra, pars reticulata
GPi: globus pallidus, internal segment; GPe: globus pallidus, external segment

STN, subthalamic nucleus; ◦ excitatory connection; • inhibitory connection
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Unsupervised, supervised and reinforcement learning

Model-free, stochastic action selection (Cortex and basal ganglia)
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Unsupervised, supervised and reinforcement learning

Action selection with a forward model.
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Unsupervised, supervised and reinforcement learning

Differential model-based action selection.

Doya, Kenji. Neural networks 12.7 (1999): 961-974.
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Function of Doya’s brain model

Compensation of sensory feedback delay with a forward model. The
thick arrow represents either of the state-to-action mapping by the
architectures shown above.
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Function of Doya’s brain model

Simulation of behaviour using a forward model instead of the real
environment.

bonus lecutre in 2015 Michael Herrmann RL 19



Function of Doya’s brain model

Encapsulation of complex decision process in a simple reactive
mapping.

Doya, Kenji. Neural networks 12.7 (1999): 961-974.
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Learning (according to F. Wörgötter)

bonus lecutre in 2015 Michael Herrmann RL 19



RL: The Computational Neuroscience Approach

The problem: optimal prediction of future reward
The algorithm: temporal difference learning
Neural implementation: does the brain use TD learning?

David Marr (according to P. Dayan)
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Neural Modelling

Reinforcement learning has revolutionised our understanding of
learning in the brain in the last 20 years (Y. Niv)

Certain cortical neurons exhibit an elevated (anticipatory) activity
during periods before significant behavioural events

Dopamine neurons in the midbrain, however show activities that
can be interpreted as an error signal in the theory of
reinforcement-learning.

Suri, R. E., Schultz, W. (2001) Temporal difference model reproduces anticipatory neural activity.

Neural Computation 13(4), 841-862.
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Reward system in the brain (beyond algorithms)

Overview of reward
structures in the human
brain. Dopaminergic
neurons are located in the
midbrain structures
substantia nigra (SNc) and
the ventral tegmental area
(VTA).

Their axons project to the striatum (caudate nucleus, putamen and
ventral striatum including nucleus accumbens), the dorsal and
ventral prefrontal cortex. Additional brain structures influenced by
reward include the supplementary motor area in the frontal lobe,
the rhinal cortex in the temporal lobe, the pallidum and
subthalamic nucleus in the basal ganglia, and a few others.

O. Arias-Carrión et al. "Dopaminergic reward system ..." Int. Archives of Medicine 3 (2010): 24.
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Dopamine

Dopamine is commonly associated with the reward system of the
brain, providing feelings of enjoyment and reinforcement to
motivate a person to perform certain activities.

It is released (particularly in areas such as the nucleus accumbens
and prefrontal cortex) by rewarding experiences such as food, sex,
drugs, and neutral stimuli that become associated with them

Dopamine is closely associated with reward-seeking behaviours,
such as approach, consumption, and addiction. Recent research
suggests that the firing of dopaminergic neurons is motivational as
a consequence of reward-anticipation.

O. Arias-Carrión, E. Pöppel. Act Neurobiol Exp 67 (2007) 481-488
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Dopamine’s role in motivation, desire, and pleasure

Rats were depleted of dopamine by up to 99 percent in the nucleus
accumbens and neostriatum using 6-hydroxydopamine. With this
large reduction in dopamine, the rats would no longer eat of their
own volition. The researchers of this study concluded that the
reduction in dopamine did not reduce the rat’s consummatory
pleasure, only the desire to eat.

K. Berridge, T. Robinson. Brain Res Brain Res Rev 28 (1998) 309-69.

Mutant hyperdopaminergic (increased dopamine) mice show higher
"wanting" but not "liking" of sweet rewards. Mice who cannot
synthesise dopamine are unable to feed sufficiently to survive more
than a few weeks after birth, but will feed normally and survive if
administered L-DOPA.

S. Peciña et al. J Neurosci 23 (2003) 9395-402.

When monkeys are given a highly palatable food, dopamine levels
rise, but levels then decline when the palatable food is available for
prolonged periods of time and is no longer novel.

en.wikipedia.org/wiki/Dopamine
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Prediction error hypothesis
Dopamine neurons in ventral tegmental area (VTA)

W. Schultz et al. Science 1997.
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Striatum and learnt values

Striatal neurons show ramping activity that precedes a reward (and
changes with learning!)

Schultz

Daw: Ramping from start to
food reward

P. Dayan
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Evolution of reinforcement learning in a model

(a) The bee’s neural network controller.

(b) The bee’s action function. Probability

of reorienting direction of flight as a func-

tion of P(t) for different values of paramet-

ers m; b. (c) The genome sequence of the

simulated bee.

(a) The foraging robot. (b) Blue and yel-

low differential weights represent the ex-

pected rewards from the two flower col-

ours along the trials. Top: Flower col or

chosen in each trial. (blue flowers: 1/2

µl nectar, yellow: 1 µl in half the flowers,

contingencies switched after trial 10.)

Y. Niv, D. Joel, I. Meilijson, E. Ruppin (2001) Evolution of reinforcement learning in uncertain
environments: Emergence of risk aversion and matching. Proc. ECAL.
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How to implement TD in a neuronal way (F. Wörgotter)
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How to implement TD in a neuronal way (F. Wörgotter)
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Biological evidence

Evidence Accumulation (Gold & Shadlen, 2007)
Variants: SARSA (Morris et al, 2006)
Q learning (Roesch et al, 2007)
Neuromodulation

dopamine phasic: prediction error for reward tonic: average
reward (vigour)
serotonin phasic: prediction error for punishment?
acetylcholine: expected uncertainty?
norepinephrine unexpected uncertainty; neural interrupt?
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Average firing rate of 19 dopaminergic neurons, recorded in rats performing an odor-discrimination task
in which one of the odors predicted that a reward would be delivered in a food-well, with some delay.

Color indicates the length of the delay preceding reward delivery from 0.5 to 7 seconds. Activity is
aligned on odor onset (left) and food-well entry (right). Note that the response to the (not fully
predicted) reward is similar in all trial types (with the earliest rewards perhaps better predicted, and thus
accompanied by smaller prediction errors), but the response at the time of the predictive cue depends on
the predicted delay of the reward, with longer predicted delays eliciting a smaller dopaminergic response.
Adapted from Roesch et al. (2007) by Y. Niv (2009)



F. Wörgotter



Example: Path-finding in simulated rats

F. Wörgotter
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F. Wörgotter



Reinforcement learning in spiking neural networks

Randomness of synaptic
transmission is harnessed by the
brain for learning
Possible if synapses are
“hedonistic”, responding to a
global reward signal by
increasing their probabilities of
vesicle release or failure,
depending on which action
immediately preceded re- ward.
Hedonistic synapses learn by
computing a stochastic
approximation to the gradient of
the average reward.

Seung, H. S. (2003). Learning in spiking neural networks by reinforcement of stochastic synaptic
transmission. Neuron, 40(6), 1063-1073.
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A spiking neural network model of actor-critic learning

Spiking neural network
model implements
actor-critic
temporal-difference
learning
Combines local plasticity
rules with a global reward
signal
Network solves a gridworld
task with sparse rewards
Similar equilibrium
performance as look-up
table variants

Learning curves for gridworld
task for fast (black) and slow
(grey) policy learning. Average
over 15 trials.

Potjans, W., Morrison, A., & Diesmann, M. (2009). A spiking neural network model of an actor-critic
learning agent. Neural computation, 21(2), 301-339.
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A spiking neural network model of actor-critic learning

Neuronal implementation of the actor-critic architecture. Each state is represented by a pool of 40
neurons, the critic by a group of 20 neurons, and the actor by one neuron for each possible action (4).

The state signal (s) consists of a positive DC stimulus from the environment (E) to the appropriate
group of state neurons. The action signal (a ) is defined as the first spike emitted by one of the actor
neurons after entering a new state. The reward signal (R) has a modulatory effect on the state-critic
synapses. The action suppression signal consists of a negative DC stimulus to the actor neurons.
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A spiking neural network model of actor-critic learning

Policy learnt by the neuronal network for the gridworld task (see
Figure 5, inset). (A–C) Preferred movement direction for each
state for different runs of the neuronal implementation. (D)
Preferred movement direction for each state averaged over 10 runs.

Possible due to specific learning scheme for state-critic synapses:

negligibly plastic except for a short time period when the agent
has just left the corresponding state
sensitive to a characteristic dynamic response of the critic
neurons, which encoding change in stimulus
sensitive to a global signal representing the reward.
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Challenges (Y. Niv)

How does learning from one task affect subsequent learning?
Responses of dopamine neurons to stimuli not clearly related
to reward prediction

Generalisation?
Novelty bonuses?

Hierarchical RL: How does an agent learn useful modules?
Temporal effects:

Is the high degree of noise in behavioural timing is consistent
with the temporal sensitivity displayed by neural prediction
error signals?
Nature of (subjective) time and temporal order?

How is unlearning represented?

Extinction learning: Pawlov’s dog eventually stopped to drool
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