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Overview

Complexity of RL
Model-based
The Dyna architecture
MORL
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Three sources of error in RL

Misallocation of approximation resources to state space:
without knowing the optimal policy one cannot sample from
the distribution that it induces on the stochastic system’s state
space
Coupling of optimal decisions at each stage: finding the
optimal decision rule at a certain stage hinges on knowing the
optimal decision rule for future stages
Inadequate control of generalisation errors: without a model
ensemble averages must be approximated from training
trajectories

D. Blatt and A. Hero ICAPS Workshop 2006
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Types of RL approaches

Policy search: π : s → a
Value function based: (s, a)→ V
implies policy-based methods by search for the action that
maximised value
Model based (s, a)→ (s ′, r)
implies value-based methods by solving Bellman equations
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Policy evaluation process: Using a model

Sampling process is costly
Proxy collects the
samples from
environment and con-
structs an agent-centric
model that predicts the
effects of hypothetical
agent policies.
Agent learns by inter-
acting with the proxy.

from Peshkin & Shelton 2001
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Model based RL: Dyna

Relationships among
learning, planning, and

acting. The general Dyna architecture
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Dyna-Q

1 Record state s and select action a
2 Execute action a and record next state s ′ and reward r ,
3 Improve state-action value function using the sample
〈s, a, r , s ′〉

4 Improve world model M (s, a)→ (s ′, r)

5 Enter planning cycle
repeat:

1 Select a random state s̃ and a random action ã and
2 Apply the world model in order to obtain s̃ ′ and r̃
3 Improve state-action value function using the sample
〈s̃, ã, r̃ , s̃ ′〉

6 Go to 1
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Remarks on Dyna-Q

Dyna-Q uses Q learning as a subroutine
Dyna-Q uses “dreaming” to obtain a consistent value function
Dyna-Q+ includes an exploration bonus, e.g. κ

√
t (s, a),

where t (s, a) is the number of time steps since action a was
last executed in state s (in the real world), κ is the exploration
strength

Q (s, a)=Q (s, a)+η

(
r +γmax

b
Q
(
s ′, b

)
−Q (s, a)+ κ

√
s (s, a)

)
Dyna can be used with other algorithms e.g. Dyna-AHC
(adaptive heuristic critic including a prediction of return,
i.e. long-term cumulative reward)
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Dyna-AHC: Experiment

Trial is one trip from start state S
to goal state G. Shown are
averages over 100 runs.

Policies found by the middle
of the second trial. Black
square is the current location.

R. S. Sutton: Reinforcement Learning Architectures.
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When the Model Is Wrong

Blocking task:
Left environment for the first
1000 steps, then right one for
the rest.

Shortcut task:
Left environment for the first
3000 steps, then the right one
for the rest.

from the Sutton and Barto book
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Using a model

Large state spaces

factorisable transition probabilities

POMDP with a restricted class of strategies Π

chose π ∈ Π with maximal return

what is sample complexity? From supervised learning

How many samples are needed to learn a function f ∈ F of a
certain complexity?
e.g. neural network realises h (x) with h ∈ H in order to
approximate f (x) . Assume |H| = n then typically only
O (log (n)) samples are needed to find a good h (n).
Since we are choosing from H the complexity of f does not
play a role (if |H| is small and |F| is large)

Assume a simulator (a generative model) of the POMDP
Find bounds on the required amount of simulated experience
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Multiobjective Reinforcement Learning

RL is sequential decision making under uncertainties based on
a scalar evaluation signal
Defining a single reward signal is often the result of a complex
design process. Typically several reward signals are available to
the agent.
How can an agent solve several tasks with different rewards
simultaneously?
Does not annihilate information by summing the rewards
(which may not be comparable)
Does the problem become easier or harder for multiple values?
Robot example: Reach goal(s), avoid wear, keep track of
position, avoid getting to close to a human, avoid running out
of energy, help other agent that are met on the way ...
Two main strategies:

Scalar combination of the reward signals
Pareto optimisation
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Multi-objective Optimisation

Example: A machine is characterised by power and torque. A
machine is better if – at equal torque – its power is higher.

Combination of utility functions, e.g.
f (x) = |f1 (x)|α + |f2 (x)|α
f (x) = αf1 (x) + (1− α) f2 (x)
How to set α?

If α is not implied by the problem,
any value in between the two
maxima is equally good.

If a comparison between the two quantities is not possible, a set of
solutions should be considered as optimal (Pareto-optimal).

How to optimise one criterion without loosing on other criteria?
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Multi-objective Optimisation

x∗ is Pareto optimal for a class of
fitness functions {fi} if there exists
no x 6= x∗ with fi (x) ≥ fi (x∗) for all i

or, equivalently, x∗ is not dominated
by any other x : ∼∃x � x∗

(more specifically ∼∃x �{fi} x∗)

Example with three fitness
functions

Same example: Pareto area spanned by
maxima in a shape-dependent way
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Multi-objective RL

Two strategies: ... and questions

Scalarised approach: Find a single policy that optimises a
combinations of the rewards

Which reward combination is preferable at which state?
Although a weighted sum of rewards might be an option,
usually a weighted sum of values is considered to more relevant
of the actions choice

Pareto approach

Find multiple policies that cover the Pareto front: Sampling in
a high-dimensional case
In principle, collective search required for sampling the Pareto
set
What is a good approximation/representation of the Pareto
front?
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Relation between Scalarisation and Pareto

A parametrised combination of multiple reward signals is used
with different parameters in different runs to address different
points along the Pareto front. The set of all solutions obtained
in this way contains the Pareto front (e.g. in case of a
non-connected Pareto front also non-Pareto optimal solutions
may be found)
The agent may changes the parametrisation according to
progress on each of the goals
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Approaches to MORL

(C. Liu et al., 2013)
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W-learning

The Top-Q algorithm chooses simply

at = max
i
Wi = max

i
max

a
Qi (st , a)

The result depends usually on the scales of the reward signals.

W-learning: Define a principal value function ` and choose

a` (t) = max
a
Q` (s (t) , a)

Calculate W-values by

Wi = max
a
Qi (s (t) , a)−Qi (s (t) , a`)

or (to avoid oscillations)

Wi (s) = (1− α)Wi (s) + αPi (s)

Pi (s) = max
a
Qi (s, a)−

(
ri + γmax

b
Qi

(
s
′
, b
))

set new ` = argmaxiWi
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Approaches to MORL

AHP: Choose action a if is superior for L out of N objectives
with a total improvement over the next best action of at least
∆Q. Combine L and ∆Q using a fuzzy system.
Ranking: Define an ordering of rewards, and check low-priority
rewards only if decision is not possible by high-priority rewards.
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Advantages of multi-policy approaches

Agent remains flexible to decide about goals after learning
Constraints can be expressed by rewards
“being dominated by” denotes a partial order which is
sufficient for many RL approaches
Non-domination instead of (greedy) maximisation
Exploration along and across the non-dominated front
Use several agents (could be represented by the same robot)
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Multiple policies

Convex hull
Barrett, L., & Narayanan, S.
(2008). Learning all optimal
policies with multiple criteria.
In: 25th ICML, 41-47.
Varying parameter approach:
Finding a Nash-equilibrium of
the returns
C.R. Shelton (2001) Balancing
multiple sources of reward in
reinforcement learning. NIPS.

convex hull approach
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MORL with Policy gradient

Policy gradient techniques to approximate the Pareto frontier
How can gradient information be derived from multi-objective
sequential decision problems?
Different MORL approaches based on MO policy gradient

radial
Pareto following

see next three slides

Parisi, S., Pirotta, M., Smacchia, N., Bascetta, L., & Restelli, M. (2014) Policy
gradient approaches for multi-objective sequential decision making. In: IJCNN,
2323-2330). IEEE.

Slides and source code at: http://home.dei.polimi.it/pirotta
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Multi-Objective Policy Gradient (Parisi et al. 2014)
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Radial Algorithm (Parisi et al. 2014)
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Pareto Following Algorithm (Parisi et al. 2014)
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Discussion

Remain flexible
Applications, e.g.: Traffic control, Quality of medical service in
mobile health care, robot control, network routing, grid
computing.
MARL: In Multi-Agent systems different agents may have
different objectives. Different equilibria are possible, differently
from the discussed approaches to MORL.
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See also:
See also: http://umichrl.pbworks.com/w/page/7597585/Myths of Reinforcement Learning

10/03/2015 Michael Herrmann RL 15


