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Reminder: Rewards and Values in RL

Reward is often modelled as a function of previous state, most
recent action and state reached as a consequence of this
action:

R (st , at , st+1)

R may depend also on earlier states and actions: Suppose an
action at was executed in state st and contributed to the
reward rt+τ that was received τ time steps later. The
algorithm (if it runs correctly) represents this reward in the
value function of state st .
Vice versa, if at state st+τ a reward is received, then the
learning rule will backpropagate this information towards st
(for an appropriate value of the discount factor γ < 1). The
value of st is (among others) due to the fact that an action at
can be applied there that (often) leads towards st+τ where a
rt+τ can be expected.
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Inverse reinforcement learning

Given measurements of an agent’s behaviour over time (st , at ,
st+1), find out how reward is distributed if it is known that the
agent derives its actions from a value function based on the
rewards.
In other words, analyse the behaviour (i.e. action choices) of
the agents in order to find R (st , at , st+1).
Obviously, the reconstructed R̂ will recover R only up to some
transformation and baseline, even after successful learning.
The task can be simplified (such that a realistic problem
complexity is reached) if a transition model or time horizon is
given.

Find (set of) possible reward function(s) R such that (empirically
given) π is an optimal policy
T. S. Reddy et al. (2912) Inverse reinforcement learning for decentralized non-cooperative multiagent
systems. To appear in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, Seoul, South Korea.
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Motivation

Goals

Learning from Demonstration
What are the driving forces for human and animal behaviour?
Enabling robots to “understand” humans or other robots.
Improving the ability of robots to learn by imitation
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Examples

Car driving simulation (Abbeel et al 2004, Syed and Schapire,
NIPS 2007)
Autonomous helicopter flight (Andrew Ng et. al., 2006)
Aerial imagery based navigation (Ratliff, Bagnell and
Zinkevich, ICML 2006)
Parking lot navigation Abbeel, Dolgov, Ng and Thrun, IROS
2008
Urban navigation, route recommendation, and destination
prediction (Ziebart, Maas, Bagnell and Dey, 2008)
Human path planning (Mombaur, Truong and Laumond,
AURO 2009)
Human goal inference (Baker, Saxe and Tenenbaum, Cognition
2009)
Quadruped locomotion (Ratliff, Bradley, Bagnell and
Chestnutt, NIPS 2007; Kolter, Abbeel and Ng, NIPS 2008)
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Why not “behavioural cloning”?

Use a supervised learning algorithm to find a optimal representation
of the data {(st , at)| t ∈ T }, i.e. find a policy π̂ that minimises∑

t∈T ′
(π̂ (st)− at)

2

Restrict family of estimators for the policy and choose T and T ′
differently in order to avoid overfitting.

Problems: Agent is inflexible, cannot change goals and may fail if
more than present state is needed in order to perform (i.e. in a
non-Markovian environment.

Possible solution: Hierarchical RL could use cloned partial
policies.(see also: Pomerleau, NIPS 1989, ALVINN; Sammut et al.,
ICML 1992: Learning to fly.)

Here: Instead of the policy π, estimate the reward R (inverse RL)
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IRL: Mathematical Formulation

Given

State space S, action space A
Transition model T (s, a, s ′) = P(s ′|s, a)
not given: reward function R(s, a, s ′)
Teacher’s demonstration (from teacher’s policy π∗ ):
s0, a0, s1, a1, . . .

Find R̂ , such that V π∗ ≥ V π, ∀π, i.e.

E

[ ∞∑
t=0

γt R̂ (st) |π∗
]
≥ E

[ ∞∑
t=0

γt R̂ (st) |π

]
, ∀π

Problems:

π∗ is given in terms of state transitions (trajectories).
How to evaluate the expectations?
The conditions are satisfied by the trivial solution R̂ = 0.
Solution methods should prefer non-trivial solutions.
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Inverse reinforcement learning

Evaluation of the expectations by sample average of the data〈 ∞∑
t=0

γt R̂ (st) |π∗
〉
≥

〈 ∞∑
t=0

γt R̂ (st) |π

〉
, ∀π

But trajectory is determined by value, while we need the rewards.

Use Bellman equations

V π (s) = R + γPa (s, s ′)V π
(
s ′
)

Matrix form
R = (I − γPa)V π

i.e.
V π = (I − γPa)−1 R

A. Y. Ng & S. Russell (2000) Algorithms for inverse reinforcement learning. ICML.

N.B.: Why reward rather than value? Reward often independent of
trajectory, more easily generalisable; value is “smoothed” reward.
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Inverse reinforcement learning

Assuming there is a single best action

a = argmax
b∈A

R (s) +
∑
s′

Pb (s, s ′)V
(
s ′
)

i.e. ∑
s′

Pa (s, s ′)V
(
s ′
)
�
∑
s′

Pb (s, s ′)V
(
s ′
)
∀b ∈ A\{a}

in matrix form and using R = (I − γPa)−1 V π∑
s′

Pa(s, s ′)(I−γPa)−1R (s)�
∑
s′

Pb(s, s ′)(I−γPa)−1R (s) ∀b ∈A\a

i.e. π (s) = a is optimal if R satisfies (� element-wise greater-than)n)

Pa (I − γPa)−1 R � Pb (I − γPa)−1 R

Pa denotes the |S| × |S| transition matrix given action a
R denotes the |S| vector {R(s, π(s))}
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Inverse Reinforcement Learning

(Pa − Pb) (I − γPa)
−1 R � 0

R = 0 is always a solution (give an advantage to nonzero R)
Multiple solutions: Favour solutions that make single-step
deviations from π as costly as possible (this does not reflect a property of
the reward function we are looking for, but provides us with a statistically robust solution)

Maximise
n∑

i=1

min
b∈A\a

(Pa (si )− Pb (si )) (I − γPa)
−1 R

subject to (Pa − Pb) (I − γPa)
−1 R � 0 and R ≤ Rmax

Solve as linear programming problem
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IRL with function approximation from sampled trajectories

Policy given only by a set of trajectories in state space (transition
probabilities unknown), assume that the system can be simulated or
queried

Trajectory starts at s ∈ S0 with partial policy π given by
trajectory
Calculate V π (s0) given candidate R (s) =

∑d
i=1 αiϕ (s) using

function approximation
Find αi to maximise∑

s∈S0 minb∈A
{
P
(
Es′∼Psa [V

π (s ′)]− Es′∼Psb [V
π (s ′)]

)}
subject to |αi | < 1
New values for the αi define a new reward function
Repeat

It may be reasonable to add a regularisation term −λ ‖R‖1 where
‖·‖1 denotes the absolute norm (`1) and λ ≥ 0, see below.
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Inverse RL and Apprenticeship Learning

From V. Ngo & M. Toussaint (inspired from a poster of Boularias, Kober,
Peters)
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Apprenticeship learning

Inverse RL analyses the problem. Apprenticeship learning try
to use the results of IRL. (Apprenticeship via inverse
reinforcement learning by P. Abbeel)
Markov decision process with unknown reward function:
Observe behaviour of an expert
Similar to Learning from Demonstration, but is expected to
generalise better because reward structure is reconstructed in
addition to the reproduction of behaviours
May never exactly recover the expert’s reward function, but
will often attain performance close to that of the expert
(measured by the unknown reward function of the expert)

P. Abbeel, A. Ng: Apprenticeship learning via inverse reinforcement learning.” 21st ICML 2004.
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Apprenticeship learning

Algorithm: For t = 1,2,. . .

Inverse RL step: Estimate expert’s reward function

R(s) = w>ϕ(s)

such that under R(s) a model expert performs better than for
all previously found policies πi .
RL step: Compute optimal policy πt for the estimated reward
weights w .

Because of

E
[
γtR (st) |π

]
=E

[
γtw>ϕ(st)|π

]
=w>E

[
γtϕ(st)|π

]
=w>η (π)

the same weights can be used for the value function. Based on N
sample trajectories we will use

η (π) =
1
N

N∑
i=1

Ti∑
t=0

γtϕ (st)
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Apprenticeship learning: Algorithm

Finding a policy π whose performance is as close to the expert
policy’s performance as possible∥∥∥w∗>η (π∗)− w>η (π)

∥∥∥ ≤ ε
Optimise margin between policies by margin of feature values:

assume R (s) = w>ϕ (s), where w ∈ Rn and ϕ : S → R
initialise π0

for i = 1, . . . do
Find a reward function such that the teacher maximally
outperforms all previously found controllers

max
γ,‖w‖≤1

‖κ‖

such that

w>η (π∗) ≥ w>η (π) + κ ∀π ∈ {π0, π1, . . . , πi−1}

Find optimal policy πi for reward function Rw w.r.t current w .

end for
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Convergence and sampling

Convergence:

Let an MDP\R, k-dimensional feature vector ϕ be given. Then the
algorithm will terminate with max ‖τ‖ ≤ ε after at most

O
(

k
(1− γ)2 ε2

)
log
(

k
(1− γ) ε

)
iterations.

Sampling:

In practice, we have to use sampling estimates for the feature
distribution of the expert. We still have ε-optimal performance w.p.
(1− δ) for the following number of samples

m ≥ 9k
2 (1− γ)2 ε2

log
2k
δ
.

... complexity is polynomial.
10/03/2015 Michael Herrmann RL 15



Apprenticeship learning: Example

Reward function is
piece-wise constant over
small regions. Features ϕ
for IRL are these small
regions.
128x128 grid, small regions
of size 16x16 (macrocell), a
few of which have positive
reward.
Learning using 8x8
macrocells (features)
30% of actions are random
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Apprenticeship learning: Example
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Experiments (Data and ground truth vs. reconstruction)

Bottom: true reward function.

Results for two different
regularisation parameters (top
λ = 0, bottom λ = 1.05).

Ng, A. Y., & Russell, S. J. (2000). Algorithms for inverse reinforcement learning. In Icml (pp. 663-670).
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Experiment: IRL with function approximation

Mountain car problems:
(i) Going up
(ii) Parking down
State space: x , v
Reconstruction of the optimal
policy (given on a 120× 120
discretisation of the state space
Based on 5000 samples
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Apprenticeship Learning: Conclusion

Given expert demonstrations, the inverse RL algorithm returns
a policy with performance as good as the expert as evaluated
according to the expert’s unknown reward function.
Given an initial demonstration, there is no need to explicitly
explore the state/action space. Even if you repeatedly
“exploit” (use your best policy), you will collect enough data
to learn a sufficiently accurate dynamical model to carry out
your control task.

P. Abbeel, A. Ng: Apprenticeship learning via inverse reinforcement learning.” 21st ICML 2004.
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Challenges

Experts (in particular human experts) are not optimal.
Time series may contain errors or rare deviations
In competitive environments opponents may play tricks or be
not optimal themselves
Bayesian problem for probabilistic policies (Neu and
Szepesvari, UAI2007)
In POMDPs: Choi, J., & Kim, K. E. (2011) Inverse
reinforcement learning in partially observable environments.
JMLR 12, 691-730.
Transfer learning: Taylor, M. E., & Stone, P. (2009). Transfer
learning for reinforcement learning domains: A survey. JMLR
10, 1633-1685.
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