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POMDPs: Points to remember

Belief states are probability distributions over states
Even if computationally complex, POMDPs can be useful as a
modelling approach (consider simplification of the
implementation in a second stage)
POMDPs enable agents to deal with uncertainty efficiently
POMDPs are Markov w.r.t. belief states
Beliefs tend to blur as consequence of the state dynamics, but
can refocus by incorporating observations via Bayes’ rule.
Policy trees take all possible realisations of the sequence of
future observations into account, i.e. the choice of the current
action depends on the average over many futures.
This causes exponential complexity unless the time horizon is
truncated (standard) or approximations are used (e.g. QMDP,
AMPD, and sample-based methods).
Often some states are fully observable and these may be the
states where decisions are critical (e.g. a robot turning when
observing a doorway)
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Markov models

A. Cassandra: http://www.pomdp.org/faq.shtml
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Solving small information-gathering problems
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POMDP: Applications

Belief-MDP (Åström, 1965)
Autonomous robot localisation and navigation
Classical RL applications (test problems): elevator control,
machine maintenance, structural inspection,
Business (IT): marketing, troubleshooting, dialog systems,
distributed data base queries, routing
Operations research: Medicine, finance, fishery industry,
conservation, education

Anthony Cassandra. A Survey of POMDP Applications. Presented at the AAAI Fall Symposium, 1998.

Young, S., Gasic, M., Thomson, B., & Williams, J. D. (2013). POMDP-based statistical spoken dialog

systems: A review. Proceedings of the IEEE, 101(5), 1160-1179.
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Belief spaces

In terms of belief states, POMDPs are MDPs: previous
methods are applicable.
Belief state: a line for 2 states, ..., a simplex for N states
Value function over belief state is piecewise linear and convex
(Sondik, 1978)

Represent by points → point-based algorithms
Represent by vectors → α-vector based
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Value iteration
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Algorithm POMDP(T ) (based on a set of points xi)

Υ = {(0, . . . , 0)}, U = ∅
for τ = 1 to T do

Υ′ = ∅
for all

(
U ; vk

1 , . . . , vk
N
)

in Υ do
for all control actions u do

for all measurements z do
for j = 1 to N do

vk
j,u,z =

∑N
i=1 vk

i p (z |xi ) p (xi |u, xj )
endfor

endfor
endfor

endfor
for all control actions u do

for all k = 1 to |Υ| do
for i = 1 to N do

v ′i = r (xi , u) + γ
∑

z vk
i,u,z

endfor
add u to U and (U ; v ′1, . . . , v ′N) to Υ′

endfor
endfor

optional: prune Υ’
Υ=Υ’

endfor
return Υ
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Remarks on the algorithm

Without pruning |Υ| increases exponentially with T
The algorithm describes the determination of the value
function. Value iteration, actual observations and actions are
not entering.
Further steps in algorithm

Find value function on policy trees up to a given T
Determine maximum over branches and perform first action
Recalculate policy taking into account observations and
rewards
Update observation model, transition model and reward model

Many variants exist.
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A systematic approach to POMDPs

POMDPs have no information about states but about observation
outcomes and preformed actions.

In the following we start with a trivial expression of this fact and
use this to motivate belief states.
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Finite Horizon Problems

COMDP with horizon T : Optimal policy is a sequence of
mappings π∗t : S → A, t = 0, . . . ,T − 1

π∗=(π∗t )t=0,...,T−1 =arg max
π0,...,πT−1

E

[
r (sT ) +

T−1∑
t=0

r (st , πt (st))

]

Previously, we assumed that all t share the same mapping.
POMDP: Optimal policy π∗ depends on past actions and
observations. Policies are trees

π : (A×O)∗ → A

Optimal policy trees can be calculated by value iteration on
branches of policy trees. Branches correspond to sequences of
actions and observations
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Information states

In principle all previous information is needed to decide about
values and actions.

This is realised by information states I ∈ (A×O)∗, e.g.
It = (a0, o0, ..., at , ot).

Then it holds (trivially) that

P (It+1 = (a0, o1, ..., at+1, ot+1) |at+1, It) = P(ot+1|at+1, It)

A POMDP is an information state MDP (with a huge state space)

Rewards
rI (It , at) =

∑
s∈S

P (st = s|It) r (s, a)
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Value iteration on information states

Initialisation
VT (IT ) =

∑
s∈S

P (sT = s|IT ) r (s)

Bellman optimality equation

V ∗ (It) =max
a∈A
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+ γ
∑
o∈O

P (o|It , a)V ∗ (It+1 = (a0, . . . , a = at , o = ot+1))

)

State space grows exponentially with T (episode length)

Belief states summarise information states by distributions of states.
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Equivalence of Information States and Belief States

For an underlying Markov process, information states and belief
states are equivalent in the sense that the lead to the same optimal
value functions.

Belief states summarise information states by distributions of states

Optimal value functions are defined by the Bellman optimality
equation.

Equivalency in terms of the value functions follows from the
compatibility of the belief update with the Bellman equation
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Belief update
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z observation, u action, s state, b belief (distribution of states)

O observation model, T state transition probability

Rewards on belief states: ρ (b, u) =
∑

s∈S b (s)R (s, a)
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Value iteration on belief states

Initialisation
VT (b) =
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Bellman equation
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Policy iteration

Backup in belief space:
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Recent and current research

Solution of Gridworld POMDPs (M. Hausknecht, 2000)
Point-based value iteration (J. Pineau, 2003)
Large problems: Heuristic Search Value Iteration (T. Smith &
R. Simmons, 2004): 12545 states, considering bounds for the
value function over belief states
Learning POMDPs from data (Learning a model of the
dynamics)

compressed predictive state representation
Bayes-adaptive POMDPs (tracking the dynamics of belief
states)

Policy search, hierarchical POMDPs, decentralised POMDPs,
...

Joelle Pineau (2013) A POMDP Tutorial. European Workshop on Reinforcement Learning.
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Summary on POMDPs

POMDPs compute the optimal action in partially observable,
stochastic domains.
For finite horizon problems, the resulting value functions are
piece-wise linear and convex, but very complicated
A number of heuristic and stochastic approaches are available
to reduce the complexity.
Combinations with other RL approaches possible
POMDPs have been applied successfully to realistic problem is
robotics
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