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A trace through an MDP

Environment: You are in state 65. You have 4 possible actions.
Agent: I’ll take action 2.

Environment: You received a reinforcement of 7 units. You are
now in state 15. You have 3 possible actions.

Agent: I’ll take action 1.
Environment: You received a reinforcement of -4 units. You are

now in state 16. You have 2 possible actions.
Agent: I’ll take action 2.

Environment: You received a reinforcement of 8 units. You are
now in state 15. You have 3 possible actions.

...
...

How is this different for a POMDP?
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Types of Planning Problems

State Action Model
Classical Planning observable deterministic accurate

MDP observable stochastic
POMDP partially observable stochastic

Two types of uncertainty

Stochasticity: Only parameters of a distribution can be known
Partial observability:

There is an underlying deterministic process that in principle
can be inferred
This deterministic process may govern the parameters of a
stochastic process
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Background: COMDPs vs POMDPs

Same: set of states and actions, transitions and immediate rewards.

Different:

Previously: (regular)
discrete MDPs −→
completely observable
(COMDPs)
Value iteration
algorithm for COMDPs
gives a value per state
accurate state
information is available
Markovian

POMDPs are also discrete MDPs.
No certainty about the current state
How represent values and actions?
Probabilistic observations replace
explicit state information
Observation model needed:
Bayesian estimation of states
Taking into account information
about previous states:
Non-Markovian for states, but
Markovian in terms of belief states.
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Reminder (Bellman for MDPs)

Bellman optimality equation for states s and actions a

V ∗(s) = max
a

∑
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ss′
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ss′ + γV ∗
(
s ′
))

Usually we can assume that Ra
ss′ = r (s, a) (i.e. independent on next state)
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For continuous states x and actions u this becomes
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Value iteration
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POMDPs: Beliefs instead of state information

Generalisation of COMDPs: POMDPs
State is not observable: Agent relies on beliefs about its state
A belief is a probability distribution over states.
Simple example: Assume two states (1 and 2),

the agent could, e.g., have the belief b1 = .95 to be in state 1
For consistency, we will assume that b2 = 1− b1 = 0.05
From the point of view of the agent, the state is now described
by the parameter b1
If the agent correctly believes that b1 = 1 or that b1 = 0, we
have the special case of a COMDP

If the belief state is nontrivial, the agent will either decide
under uncertainty or can choose to reduce uncertainty.
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Bellman for belief states

Define the belief b of the agent about the its state and
formulate a POMDP with a value function over a belief space:

Vt (b) = max
u

(
r (b, u) +

∫
Vt+1

(
b′
)
p
(
b′|u, b

)
db′
)

Bayesian belief propagation (given action a):

b′(s ′) =
Ω(o | s ′, a)

∑
s∈S T (s ′ | s, a)b(s)∑

s′′∈S Ω(o | s ′′, a)
∑

s∈S T (s ′′ | s, a)b(s)

where s are the previous states with distribution b, s ′ the new
states with distribution b′, T the actual state transitions, and
Ω the actual observation probabilities for signals o.
Usually, T increases uncertainty, Ω reduces uncertainty.
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POMDP: Formal definition and belief propagation

A POMDP is a tupel (S ,A,O,T ,Ω,R), where

S is a set of states,
A is a set of actions,
O is a set of observations,
T is a set of conditional transition probabilities,
Ω is a set of conditional observation probabilities,
R : A× S → R is the reward function
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Consequences

As beliefs are probability distributions, POMDPs involve
functions on (continuous) probability distributions
Belief spaces are generally huge
Because of continuity, belief spaces have a relatively simple
structure
If we assume

finite state space
finite action spaces
finite horizons

then we can represent value functions by piece-wise linear functions
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The Tiger problem
(from: Dr. Stephan Timmer "Introduction to POMDPs")
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The Tiger problem
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The Tiger problem

Initialise beliefs by [0.5 0.5]: Equal probability for Tiger left or right.

Two-step look ahead: If observation is twice “HearLeft”, model-
based belief of “Left” is 0.97 and action “Right” appears to be save.
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Learning in POMDPs

As always: Choose policy in order to maximise expected reward
Reward expectation will be based on current belief
Observations affect belief and thus expectations
For discrete observations:

at each step several possibilities
policy branches according to observation
policy tree! (grows exponentially → finite horizon)
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The Tiger problem

Value of the “Listen” action, starting from an arbitrary belief state:

Ranges at t = 0 are implied by the reward ratio for the two states: If the
belief in “Tiger-Right” is less than 1

10 then action “open-Right” is better.
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Multi-step prediction

Value is estimated based on next-step values (and immediate
reward)
Present value: Present reward + expected reward

to include average over next observations (over a tree of finite
length)
including the resulting change in belief

We are talking about an MDP, i.e. all probabilities are known.
In practice the agent still has to find it out by sampling.
Values as a function of belief are piece-wise linear and convex:
Linear Programming!

03/03/2015 Michael Herrmann RL 13







Preliminary Summary on POMDPs

POMDPs compute the optimal action in partially observable,
stochastic domains.
For finite horizon problems, the resulting value functions are
piece-wise linear and convex and can be calculated “easily”.
Based on appropriate assumptions, POMDPs can be applied
also to problems of realistic sizes.
Often simiplifications and approximations are used:

QMDPs
AMDPs: Augmented MPDs
PBVI: Point-based value iteration
Monte Carlo POMDPs

see also: cs.brown.edu/research/ai/pomdp/index.html
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Point Based Value Iteration

Maintains a set of example beliefs
Only considers constraints that maximise value function for at
least one of the examples

Solve POMDP for finite set of
belief points

Initialise linear segment for each
belief point and iterate

Occasionally add new belief points

Add point after a fixed horizon
Add points when improvements
fall below a threshold
Add points implied by belief
update if sufficiently different
from present set
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Point Based Value Iteration

Solve POMDP for finite set of belief points

Can do point updates in
polynomial time

Modify belief update so
that one vector is
maintained per point
Simplified by finite
number of belief points

Does not require pruning!

Only need to check for
redundant vectors

J. Pineau, G. Gordon, and S. Thrun, Point-based value iteration: An anytime algorithm for POMDPs.
International joint conference on artificial intelligence. Vol. 18. Lawrence Erlbaum Associates Ltd, 2003.
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Point-based Value Iteration

Value functions for t = 30

Exact value function PBVI
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QMDPs

QMDPs only consider state uncertainty in the first step
(and, in a sense, similar to Q-learning:)
After that, the world is assumed to become fully observable.

Algorithm QMDP(b = (p1, . . . , pN))
V̂ = MPD_DiscreteValueIteration()

for all control actions u do
Q (xi , u) = r (x , u) +

∑N
j=1 V̂ (xj) p (xj |u, xi )

end for
return u′ =argmaxu

∑N
i=1 piQ (xi , u)
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Augmented MDPs

Augmentation adds uncertainty component to state space,
e.g.,

b̄ =

(
argmaxx b (x)

Hb (x)

)
with Hb(x) = −

∫
b (x) log b (x) dx

Planning is performed by MDP in augmented state space
Transition, observation and payoff models have to be learnt

N. Roy and S. Thrun, Coastal navigation with mobile robots. In NIPS 12, 1999.
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Coastal Navigation by AMDPs (museum environment)

see: Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. MIT press.
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Monte Carlo POMDPs

Represent beliefs by samples
Estimate value function on sample sets
Simulate control and observation transitions between beliefs

S. Thrun, Monte carlo pomdps. NIPS 12 (2000) 1064-1070.
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Bayes Filter
Implementations
in Probabilistic
Robotics

(piece-wise
constant
representation)



PBVI: Example Application (“tag”)
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Dimensionality Reduction on Beliefs

N. Roy, and G. Gordon. Exponential family PCA for belief compression in POMDPs. NIPS 15 (2002):
1635-1642.
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More particle filters

Represent belief by random samples
Estimation of non-Gaussian, nonlinear processes
Monte Carlo filter, Survival of the fittest, Condensation,
Bootstrap filter, Particle filter
Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]
Computer vision: [Isard and Blake 96, 98]
Dynamic Bayesian Networks: [Kanazawa et al., 95]
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Summary on POMDPs

POMDPs compute the optimal action in partially observable,
stochastic domains.
For finite horizon problems, the resulting value functions are
piece-wise linear and convex, but very complicated
In each iteration the number of linear constraints grows
exponentially
A number of heuristic and stochastic approaches are available
to reduce the complexity.
(more or less) Heuristic versions of POMDPs have been
applied successfully to realistic problem is robotics, media
access control in ad-hoc networks, language-based
communication systems, medical image-based diagnosis
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What is Missing in POMDPs?

POMDPs do not describe natural metrics in environment

When driving, we know both global and local distances

POMDPs do not natively recognise differences between scales

Uncertainty in control is entirely different from uncertainty in
routing

POMDPs conflate properties of the environment with
properties of the agent

Roads and buildings behave differently from cars and
pedestrians: we need to generalise over them differently

POMDPs are defined in a global coordinate frame, often
discrete

We may need many different representations in real problems
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