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RL with function approximation: Points to remember

Vθ (x) = θ>ϕ (x), Qθ (x , a) = θ>ϕ (x , a)

θ ∈ RN , ϕ (x) : X → RN , ϕ (x , a) : X ×A → RN

e.g. Vθ (x) =
∑N

i=1 θi
G(‖x−x(i)‖)∑N

m=1 G(‖x−x(m)‖)

TD(λ) with function approximation

δt+1 = rt+1 + γθ>t ϕ (xt+1)− θ>t ϕ (xt)

zt+1 = ϕ (xt) + λzt

θt+1 = θt + αtδt+1zt+1

Q-learning with function approximation

at+1 = argmax
a
θ>t ϕ (xt , a)

δt+1 = rt+1 + γmax
a
θ>t ϕ (xt+1, a)− θ>t ϕ (xt , at)

θt+1 = θt + αtδt+1ϕ (xt , at)
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Today’s topics

Actor-Critic Methods (1981, see Barto, Sutton & Anderson, 1983)

Parametrisation of the policy function: Policy gradient
Compatible function approximation
Natural actor-critic (NAC)
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Actor-Critic Methods

Actor aims at improving
policy (adaptive search
element)
Critic evaluates the
current policy (adaptive
critic element)
Learning is based on the
TD error δt (usually
on-policy)
Reward only known to the
critic
Critic should improve as
well
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Actor-Critic Methods

Policy (actor) is represented independently of the (state) value
function (critic)
Usually on-policy
A number of variants exist, in particular among the early
reinforcement learning algorithms, but also more recent ones

Advantages1

AC methods require minimal computation in order to select
actions which is beneficial in continuous cases, where search
becomes a problem.
They can learn an explicitly stochastic policy, i.e. learn the
optimal action probabilities. Useful in competitive and
non-Markov cases2.

1Mark Lee following Sutton&Barto
2see, e.g., Singh, Jaakkola, and Jordan, 1994
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Example: Policies for the inverted pendulum

Exploitation (actor):
Escape from low-reward
regions as fast as possible
aim at max. r
e.g. Inverted pendulum
task: Wants to stay near
the upright position
preferentially greedy and
deterministic

Exploration (critic):
Find examples where
learning is optimal
aim at max. δ
e.g. Inverted pendulum
task: Wants to move away
from the upright position
preferentially
non-deterministic
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Critic-only methods and Actor-only methods

Critic-only methods: Value function approximation and
learning an approximate solution to the Bellman equation. Do
not try to optimize directly over a policy space. May succeed
in constructing a “good” approximation of the value function,
yet lack reliable guarantees in terms of near-optimality of the
resulting policy.
Actor-only methods work with a parameterized family of
policies. The gradient of the performance, with respect to the
actor parameters, is directly estimated by simulation, and the
parameters are updated in a direction of improvement.
A possible drawback of such methods is that the gradient
estimators may have a large variance. Furthermore, as the
policy changes, a new gradient is estimated independently of
past estimates. Hence, there is no “learning” in the sense of
accumulation and consolidation of older information.

Konda, V. R., & Tsitsiklis, J. N. (1999). Actor-Critic Algorithms. In NIPS 13, 1008-1014.

See also Refs. 8, 10, 16, 23 therein.24/02/2015 Michael Herrmann RL 11



Parametric policy

Approximation of the value function or action-value function using
parametric function

V̂θ(x) ≈ V (x)

Q̂θ(x ; a) ≈ Q(x ; a)

Policy can be generated directly from the value function e.g. using
ε-greedy exploration

Today we will directly use a parametric function also to represent
the policy

πω(a|x) = Prob[a|x ]
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Reformulation of the goal of reinforcement learning

Maximise global reward average

ρQ,π =

∫
X
µ (x)

∫
A
Q (x , a)π (a|x) da dx

ρ is equivalent to the long-run average reward (if ergodic)
µ is the (stationary) density of states, π is a stochastic policy

Function approximation for the value function and for the policy:

Maximisation over a restricted class of policies to prevent overfitting
e.g. using policies πω parametrised by parameter vector ω ∈ Rdω .

⇒ Perform stochastic gradient ascent on ρQ,πω in order to find

argmax
ω
ρω locally, using: ωt+1 = ωt + βt∇ωρω

where ω=(ω1, . . . , ωM)> and ∇ω is the gradient
(
∂
∂ω1

, . . . , ∂
∂ωM

)>
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Reformulation of the goal of reinforcement learning

Another form for the global reward average:

ρπω =
∑
x

µπω (x) V πω (x)

ρQ,πω =
∑
x ,a

µπω (x)πω (a|x)Qπω (x , a)

In order to realise the policy gradient ωt+1 = ωt + βt∇ωρω we
could assume that the dependency of µ and Q on ω to be “weak”,
i.e. use a simplifying assumption for the dependency of µ and Q on
ω, namely

∇ωρ (ω) =
∑
x ,a

µπ (x) {∇ωπω (a|x)}Qπ (x , a)
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A simplified example (to start with)

Consider only immediate reward (bandits with several “casinos”)

ρω = 〈r〉
=

∑
x

µ (x)
∑

a

πω (a|x) r (s, a)

∇ωρω =
∑
x

µ (x)
∑

a

πω (a|x)∇ω log πω (a|x) r (s, a)

= 〈∇ω log πω (a|x) r 〉a,x

The score function (∇ log π) comes into play by expressing the
gradient as an average.

N.B.: f (t) df (t)
dt = d log f (t)

dt

24/02/2015 Michael Herrmann RL 11



Score function

Let Ψω : X ×A → Rdω be the score function for πω, i.e.

Ψω (x , a) = ∇ω log πω (a|x)

Score functions are also used in statistics (remember that π (a|x) is
a probability)

Example: For finite action space, e.g. (non-deterministic) Gibbs-
Boltzmann policies

πω (a|x) =
exp
(
ω>ξ (x , a)

)∑
a′∈A exp (ω>ξ (x , a))

ω are parameters and ξ are features (similar to θ and ψ, but now
for actions)

Ψω (x , a) = ξ (x , a)−
∑
a′∈A

πω
(
a′|x
)
ξ
(
x , a′

)
24/02/2015 Michael Herrmann RL 11



Score function

Let Ψω : X ×A → Rdω be the score function for πω, i.e.

Ψω (x , a) =
∂

∂ω
log π (a|x)

Example: For infinite action space, Gaussian policies

πω (a|x)=
(2·3.141..)−dω/2
√
det Ξω

exp
(
− (a − ω ·g (x))>Ξ−1

ω (a − ω ·g (x))
)

The positive matrix Ξ > 0 is often simply a scaled version of the
unit matrix, i.e. Ξ = cI. Then, for ω = (ω1, . . . , ωM),

Ψωi (x , a) = −
(
c−1)> I (a − ω · gω (x)) gi (x)

... seems to provide us with simple gradients for the policy.
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Does it work? The policy gradient theorem

Assume: Markov chain resulting from policy πω is ergodic for any ω

Estimate the gradient of ρω

Policy gradient theorem (Bhatnagar et al., 2009)

∇ωρω = Ex ,a [B (ω)]

where
B (ω) = (Qπω (x , a)− h (x)) Ψω (x , a)

h an arbitrary bounded function that depends only on x and
Ψω (x , a) is the score function of the policy.

Instead of the expectation we will use a sample average 〈·〉, i.e. a
stochastic gradient version (i.e. following estimated gradient of ρω)

∇̂ωρω = 〈B (ω)〉
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Adding a baseline

The introduction of a free function h (x) is justified because∑
x

µπ (x)
∑

a

∇π (x , a) h (x) =
∑
x

µπ (x) h (x)∇
∑

a

π (x , a)

=
∑
x

µπ (x) h (x)∇1 = 0

so it does not affect the calculation of the gradient:

∇ωρ (ω) =
∑
x

µπ (x)
∑

a

∇ωπω (a|x) (Qπ (x , a)− h (x))

How is the baseline h useful?

h may, e.g., represent a baseline for the value or express other
constraints (see next slide)
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Function approximation: Decoupling state value and policy

Features ϕ [used in the state-action value function] are to some
extent arbitrary. Introduce orthogonality condition as additional
constraint: ∑

a∈A
π (a|x)ϕ (x , a) = 0

Using state features ψ : X → Rd , perform a change of basis
functions:

Qθ (x , a) = θ> (ψ (x)− ϕ (x , a))

Then Vθ (x) =
∑

a∈A π (a|x)Qθ (x , a) = θ>ψ (x)

In the learning rule, set Vt+1 = Vθ (x t+1) which is now independent
on the randomness of (non-deterministic) action choice

→ lower variance
→ better estimation of V
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Back to the policy gradient theorem: Update rule for ω

Stochastic gradient of global reward average

∇̂ωρω = B (ω)

where
B (ω) = 〈(Qπω (x , a)− h (x)) Ψω (x , a)〉

Typical (but not optimal) choice for h: h = V πωt

A (x , a) = Q (x , a)− V (x) is sometimes called “advantage”.

Now, form a stochastic gradient ascent on ρ

ωt+1 = ωt + βtBt

βt : decreasing learning rate (Robbins-Monro conditions!)

Depends on estimates of Q. There are several ways to approximate.
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REINFORCE (Williams, 1987)

Required are good estimates of Q and stationary samples of x and a

For episodic problems: Gradient ascent on the expected reward
(MC!)

Update parameters at the end of each episode

→ REINFORCE algorithms

In this way a direct policy search (without value functions) is
possible

In non-episodic problems: two time-scales α� β: make sure that
the estimate Q̂ is faster, i.e. can be assumed to have no bias,
policy is changing slowly such that this is actually possible
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Action-value Actor-Critic

Actor-critic algorithms maintain two sets of parameters (θ, ω),
one (θ) for the representation of the value function and one (ω) for
the representation of the policy.

Algorithm:

Initialise x and ω, sample a ∼ πω (·|x)

Iterate:

obtain reward r , transition to new state x ′

new action a′ ∼ πω (·|x ′)
δ = r + γQθ (x ′, a′)−Qθ (x , a)
ω = ω + β∇ω log πω (a|x)Qθ (x , a)
θ = θ + αδ ∂Q∂θ
a← a′, x ← x ′

Until termination criterion.
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Variants of policy gradient

The policy gradient has many similar forms which are different
realisations of the stochastic gradient w.r.t. to ρ

∇ωρ(a)ω = 〈∇ω log πω (a|x) Σrt〉 REINFORCE
∇ωρ(b)ω = 〈∇ω log πω (a|x)Qθ (x , a)〉 Q AC
∇ωρ(c)ω = 〈∇ω log πω (a|x) Aθ (x , a)〉 advantage AC
∇ωρ(d)ω = 〈∇ω log πω (a|x) δ〉 TD AC
∇ωρ(e)ω = 〈∇ω log πω (a|x) δe〉 TD (λ) AC
∇̃ωρ(f )ω = θ natural AC

AC: actor-critic
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Bias and Variance in the Actor-Critic Algorithm

The approximation of the policy gradient introduces bias and
variance. We need to be careful with the choice of the function
approximation for Q.

For compatibility of the representations of value function and
policy, require

∇θQθ = ∇ω log πω

Consider minimal squared error when calculating ρ based on an
approximation Q̂π (x , a; θ) instead of the true Qπ (x , a)

επ (θ) =
∑
x ,a

µπ (x)
(
Q̂π (x , a; θ)−Qπ (x , a)

)2
πω (a|x)

We want to show now that using the best (w.r.t. θ) approximation
Q̂π (x , a; θ) leaves the gradient of ρ (w.r.t to ω) unchanged.

S. Kakade (2001) A natural policy gradient. NIPS 14, 1531-1538.
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Compatible function approximation

Use score function

Ψi (x , a)π =
∂

∂ωi
log πω (a|x)

as basis functions, i.e. approximate of the state-action value
function in terms of Ψ

Q̂π (x , a; θ) =
∑

i

θiΨ
π
i (x , a)

This implies ∇θQθ = ∇ω log πω. It is usually possible, but may not
always be a good choice (consider e.g. Gaussian πω which give
linear Ψ)
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Consequences of the compatible function approximation

Minimisation of ε, i.e. ∂ε
∂ωi

= 0, implies∑
x ,a

µπ (x) Ψi (x , a)π
(
Q̂π (x , a; θ)−Qπ (x , a)

)
πω (a|x) = 0

or equivalently (this is what we wanted to show!)∑
x ,a

µπ(x)Ψi (x , a)πQ̂π(x , a; θ)πω(a|x)=
∑
x ,a

µπ(x)Ψi (x , a)πQπ(x , a)πω(a|x)

and in vector form using the basis functions for Q̂π = θΨ(x , a)π∑
x ,a

µπ(x)Ψ(x , a)πθΨ(x , a)ππω(a|x)=
∑
x ,a

µπ(x)Ψ(x , a)πQπ(x , a)πω(a|x)
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Consequences of the compatible function approximation

∑
x ,a

µπ(x)Ψ(x , a)πθΨ(x , a)ππω(a|x)=
∑
x ,a

µπ(x)Ψ(x , a)πQπ(x , a)πω(a|x)

By definition ∇ωπ = πΨi (x , a)π because Ψi (x , a)π= ∂
∂ωi

logπω(a|x)∑
x ,a

µπ(x)Ψ(x , a)πθΨ(x , a)ππω(a|x) =
∑
x ,a

µπ(x)Qπ(x , a)∇ωπω(a|x)

= ∇ωρ (ω)

Compare left hand side and

F (ω) = Eµπ(x)
[
Eπω(a|x)

[
∂ log πω (a|x)

∂ωi

∂ log πω (a|x)

∂ωj

]]
=
∑
x ,a

µπ(x)πω(a|x)
∂ log πω (a|x)

∂ωi

∂ log πω (a|x)

∂ωj∑
x ,a

µπ(x)Ψ(x , a)πΨ(x , a)ππω(a|x) ⇒ F (ω) θ = ∇ωρ (ω)
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Gradient descent/ascent

Given an objective function, e.g. average undiscounted reward,

ρQ,π,µ =
∑
x∈X

∑
a∈A

µ (x)Q (x , a)π (a|x) ,

depends (via π as well as Q and µ) on a vector of parameters ω.

Maximisation

ρ (ω + dω)− ρ (ω)→ max for fixed |dω|

|dω| is the length of the dω, defined by |dω|2 =
∑

ij Jijωiωj

If J = {Jij} is the unit matrix, the length is given by the standard
Pythagorean theorem |dω|2 =

∑
i ω

2
i ⇒ the geometry is Euclidean.

The question: Where on a small circle of radius |dω| around ω the
value of ρ is largest? implies standard gradient ascent.

Idea: Use J > 0 to take shape of objective ρ into account.
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Fisher Information

How take the shape of the objective into account?

ρQ,π,µ =
∑
x ,a

µπω (x)Qπω (x , a)πω (a|x)

Assume the dependency of µ and Q on ω to be “weak”, i.e.

∇ωρ (ω) =
∑
x ,a

µπ (x)Qπ (x , a)∇ωπω (a|x)

It can be shown that the solution is to choose Jij as the inverse of

Fij (x ;ω) = Eπω(a|x)
[
∂ log πω (a|x)

∂ωi

∂ log πω (a|x)

∂ωj

]
Remove state dependency by fixing ω and averaging over state
distribution that are produced on the long run by the policy πω

F (ω) = Eµπ(x) [Fij (x ;ω)]

Assuming this was correct we have now the natural gradient on ρ

dω ∼ F (ω)−1∇ρ (ω) = η∇̃ρ (ω)
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Pros and Cons of the Fisher information

+ “Natural” (covariant): uses the geometry of the goal function
rather than the geometry of the parameter space (Choice of
parameters used to be critical, but isn’t any more so).

+ Related to Kullback-Leibler divergence and to Hessian
+ Describes efficiency in statistical estimation
+ Many applications in machine learning, statistics and physics
− Depends on parameters and is computationally complex
− Requires sampling of high-dimensional probability distribution
+ May still work if some approximation is used here: Integrate

over a generic data distribution (e.g. Gaussian)
Applying the natural gradient can be interpreted as a removal
of any adverse effects of the particular architecture
Another interpretation: Modified geometry: If J > 0 then all
eigenvalues λk of this matrix are positive and
|dω|2 =

∑
ij Jijωiωj describes an ellipsoid with semi-axes λk
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Natural actor-critic (NAC)

F (ω) θ = ∇ωρ (ω)⇔ θ = F (ω)−1∇ωρ (ω) = ∇̃ωρ (ω)

Learning rule (Kakade, 2001/2)

ωt+1 = ωt + βtθt

Remarks:

Natural gradient (S. Amari: Natural gradient works efficiently
in learning, NC 10, 251-276, 1998)
Examples by Bagnell and Schneider (2003) and Jan Peters
(2003, 2008)
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Kakade’s Example

Three right curves: standard gradient, three left curves: natural
gradient

Policy π (a|x ;ω) ∼ exp
(
ω1s1x2 + ω2ssx

)
Starting conditions: ω1s1 = ω2s2 = −0.8
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Kakade’s Example

Left: average reward for the policy
π (a = 1|s;ω) ∼ exp (ω) / (1 + exp (ω))

Lower plot represents the beginning of the upper plot (different
scales!): dashed: natural gradient, solid: standard gradient.

Right: Movement in the parameter space (axes are actually ωi !)
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Summary

A systematic approach for continuous actions and space (time
is discrete)
Policy gradient as maximisation of the averaged state-action
value
Natural gradient leads to a very simple form
Model-free reinforcement learning
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