
RL 9: State Abstraction

Michael Herrmann

University of Edinburgh, School of Informatics

10/02/2015



Overview

The elevator example
Temporal abstraction
Options
Semi Markovian Decision Problems (SMDP)
Hierarchical RL

10/02/2015 Michael Herrmann RL 11



Abstraction in Learning and Planning

General problem in AI: Semantics of abstract knowledge
Reduction of complexity by exploiting task structure
How can different levels of abstraction be related?

spatial: states
temporal: time scales

Environmentally implied or repeated action trajectories
Options are also called: Skills, macros, temporally abstract
actions (Sutton, McGovern, Dietterich, Barto, Precup, Singh,
Parr, ...)
In other contexts also: Behavioural primitives, (elementary)
behaviours, schemata

10/02/2015 Michael Herrmann RL 11



Example: Elevator control: State space and reward signal

218 possible combinations of
the 18 hall call buttons (only
one at top and bottom)
240 possible combinations of
the 40 car buttons
184 possible combinations of
positions and directions of
cars: up/down to target floor

2^18 · 2^40 · 18^4 ≈ 1022 statesFormulation of goal:

Minimise the average wait time
Minimise the average system time (wait time plus travel time)
Minimise the percentage of passengers that wait longer than
some dissatisfaction threshold (usually 60 seconds)
Minimise squared wait time (combination of first and third)

A. Barto, R. H. Crites. Improving elevator performance using RL. NIPS 8 (1996) 1017-1023.

10/02/2015 Michael Herrmann RL 11



Elevator control: Continuous time problem

Modelled as discrete event systems, but the amount of time
between events is a real-valued variable. A constant discount factor
γ is thus inadequate.

Use variable discount factor for cost cτ (here minimised, instead of
maximised reward)∫ ∞

0
e−

τ
κ cτdτ instead of discrete version

∞∑
t=0

γtct

where κ & 0 is a time scale corresponding to (1− γ)−1.
Now, for events at tx and ty the learning rule becomes

∆Q̂ (s, a)=η

(∫ ty

tx
e−

τ−tx
κ cτdτ+e−

ty−tx
κ min

b
Q̂ (u, b)−Q̂ (s, a)

)
Learning time 60,000 h of simulated elevator time (4 d @ 100 MIPS)

R.H. Crites and A.G. Barto. Elevator group control using multiple RL agents.
Machine Learning 33 (1998) 235-262. (covered here only in part)

10/02/2015 Michael Herrmann RL 11



Remarks

Process is non-stationary: Waiting time is reduced if (in a
business building) in the morning unused elevators move
autonomously to ground floor and, in the evening, to a higher
floor. [I.e. if the process is stationary we can prove optimality
of the algorithm, if it is not then further improvements may be
possible.]
Additional constraints may help to avoid overly complex
reward functions,

e.g. while the elevator leaves from 8th floor downward, it is
called from 9th floor also for a downward ride
going up before proceeding downward reduces total waiting
time, but annoys the person at floor 8, while the person at
floor 9 does not know
if non-empty cars are not allowed to change direction, the
search space becomes smaller and some of the unwanted
optima are removed

Q-function represented by a neural network (s. next lectures)
10/02/2015 Michael Herrmann RL 11



Elevator control: Evaluation and practical issues

Results

shown to “outperform all of the elevator algorithms with which
we compared them”
performance is restricted by certain rules (e.g. no reversals during tours)

today’s hybrid algorithms perform better

Conclusions

“One of the greatest difficulties in applying RL to the elevator
control problem was finding the correct temperature and
step-size parameters”
“The importance of focusing the experience of the learner onto
the most appropriate areas of the state space cannot be
overstressed” [represented functions by a neural network]
Time intervals where nothing happens are tied together by
calculating the accumulated reward. This provides an efficient
temporal structure without having to choose a step size.

R.H. Crites and A.G. Barto. Elevator group control using multiple RL agents.
Machine Learning 33 (1998) 235-262. (covered here only in part)

10/02/2015 Michael Herrmann RL 11



Options

Can we combine reoccurring (non-trivial) sequences of actions
into “macro”-actions?
Seems reasonable, but are there any side effects?
How to identify useful action sequences?

10/02/2015 Michael Herrmann RL 11



Rooms example: Exploiting the structure of the environment

4 rooms
4 hallways
4 unreliable primitive
actions: up, left, right,
down; fail 33% of the
time
8 multi-step options (to
each room’s 2 hallways)
Given goal location,
quickly plan shortest
route
Cost per step as “reward”
γ = 0.9

10/02/2015 Michael Herrmann RL 11



Example: Reconnaissance Mission Planning

Mission: Fly over (observe) most valuable sites, return to base
Stochastic weather affects observability (cloudy/clear) of sites
Intractable with classical optimal control methods

Limited fuel
Temporal scales:

Actions: which
direction to fly now
Options: which site to
head for
Options compress
space and time
Reduce steps from
≈ 600 to ≈ 6
Reduce states from
≈ 1011 to ≈ 106

Q∗O (s, o) = ro
s +

∑
s′ p

o
ss′V

∗
O (s ′), s all states (106), s ′ sites only (6)

10/02/2015 Michael Herrmann RL 11



Options

Sequences of actions that follow a common theme but are not of
fixed lengths

Instead of memorising action-sequences, use partial policies
o = 〈I, π, β〉 call-and-return option

I ⊆ S set of starting states
π : S ×A → [0, 1] probabilistic policy to be follow during o
β : S → [0, 1] probability to terminate in each state

Example: Docking of a robot

I: all states in which charges is in sight
π: approach charger if recharging-necessary-bit is set
β: terminate when docked or charger not visible

10/02/2015 Michael Herrmann RL 11



Options and Semi-Markov Decision Processes (SMDP)

Discrete time:
Homogeneous discount
Continuous time,
Discrete events:
Interval-dependent
discount
Discrete time,
Overlaid discrete
events:
Interval-dependent
discount

Discrete-time SMDP overlaid on MDP (Can be analysed at either level)

For any MDP and any set of options, the decision process that
chooses among the options, executing each to termination, is an
SMDP.

10/02/2015 Michael Herrmann RL 11



Value Functions for Options

Value functions for options can be defined similar to the MDP case

V µ (s) = E {rt+1 + γrt+2 + . . . |µ, s, t}

Qµ (s, o) = E {rt+1 + γrt+2 + . . . |o, µ, s, t}

Consider policies µ ∈ Π (O) that can choose only among options

V ∗O (s) = max
µ∈Π(O)

V µ (s)

Q∗O (s, o) = max
µ∈Π(O)

Qµ (s, o)

Optimal w.r.t. to Bellman criterion for O (set of avaiable options).

In general, O-optimality does not imply A-optimality.

An option can also be a single action. If A ⊆ O then the option-
based algorithm can find the same solution as the standard
algorithm (but may be slower).
10/02/2015 Michael Herrmann RL 11



Consequence of choosing an option

Reward:

ro
s = E

[
r1 + γr2 + · · ·+ γk−1rk |s0 = s, o taken in s0, for k steps

]
Next state:

po
ss′=E

[
γkδsk s′ |s0 = s, o taken in s0, for k steps

]

10/02/2015 Michael Herrmann RL 11



Synchronous Value Iteration Generalised to Options

Initialise :
V0 (s)← 0 ∀s ∈ S

Iterate :

Vk+1 (s)← max
o∈O

(
ro
s +

∑
s′∈S

po
ss′Vk

(
s ′
))
∀s ∈ S

Converges to the optimal value function, given the options:

lim
k→∞

Vk = V ∗O

Once V ∗O is computed, µ∗O can be determined.
If O = A, we are back at the conventional value iteration
If A ⊆ O, then V ∗O = V ∗

10/02/2015 Michael Herrmann RL 11



Rooms Example

10/02/2015 Michael Herrmann RL 11



If Goal6=Subgoal: Both primitive actions and options

10/02/2015 Michael Herrmann RL 11



Advantages of Dual MDP/SMDP View

At the SMDP level

Compute value functions and policies over options with the
benefit of increased speed / flexibility

At the MDP level

Learn how to execute an option for achieving a given goal

Between the MDP and SMDP level

Termination Improvement: Improving the value function by
changing the termination conditions of options
Intra-Option Learning: Learning the values of options in
parallel, without executing them to termination
Learning the models of options in parallel, without executing
them to termination
Tasks and Subgoals: Learning the policies inside the options

10/02/2015 Michael Herrmann RL 11



Intra-option learning

SMDP learning: Update only w.r.t. the option that was
executed
Intra-option learning: Update all options that coincide in the
current elementary action

Update value function for o1
(option taken) and for a1 and
coinciding elementary actions in
other options (here a22 and a32)

Can be proven to converge to the same result as standard
Q-learning.

Intro-option learning is faster than SMDP value learning

10/02/2015 Michael Herrmann RL 11



Benefits of Options

Transfer

Solutions to sub-tasks can be saved and reused
Domain knowledge can be provided as options and subgoals

Potentially much faster learning and planning

By representing action at an appropriate temporal scale

Models of options are a form of knowledge representation

Expressive
Clear
Suitable for learning and planning

Much more to learn than just one policy, one set of values

framework for “constructivism”
for finding models of the world that are useful for rapid
planning and learning

10/02/2015 Michael Herrmann RL 11



Disadvantages

Choice of options is difficult: Suboptimal choice of options
implies suboptimal behaviour
Option typically become rigid when high-level planning sets in
(Habits)
Negative transfer: Options learnt for one task may be
inappropriate for already for a relatively similar task
Algorithm’s complexity increases

=⇒ no free lunch

Combine option learning and intra-option learning
Define subgoals: Refine and simplify policy learning within
options

10/02/2015 Michael Herrmann RL 11



Hierarchical RL: Biological evidence

Experiment: Participants chose repeatedly between two
casinos, and then chose, within each casino, among a set of
slot machines.
Behavioural analysis indicated that participants learned at both
levels of the task, discovering both which casino and which
slots were most lucrative.
fMRI indicated that outcomes at both levels generated
independent reward prediction-error signals, detectable within
the ventral striatum.
Strikingly, prediction errors at the slot-machine and casino
levels could be separately identified even when task events
triggered them concurrently

Diuk C, Schapiro A, Cordova N, Ribas-Fernandes JJF, Niv Y, Botvinick M: Divide and conquer: Task
decomposition and hierarchical reinforcement learning in humans. In: Computational and Robotic
Models of the Hierarchical Organization of Behavior. Ed. by Baldassare G, Mirolli M: Springer Verlag,
2012. (following Botvinick)

10/02/2015 Michael Herrmann RL 11



Hierarchical RL algorithms

Learning Problems (T. G. Dietterich, 2006)

Given a set of options, learn a policy over those options
[Precup, Sutton, and Singh; Kalmar, Szepesvari, and Lörincz]
Given a hierarchy of partial policies, learn policy for the entire
problem [Parr and Russell]
Given a set of subtasks, learn policies for each subtask
[Mahadevan and Connell; Sutton, Precup and Singh; Ryan and
Pendrith]
Given a set of subtasks, learn policies for the entire problem
[Kaelbling (HDG), Singh (Compositional Tasks), Dayan and
Hinton (Feudal Q), Dietterich (MAXQ); Dean and Lin]

NB: Samuel’s Checkers Player (Samuel, 1959, 1967) used
hierarchical look-up tables called signature tables (Griffith, 1966),
see S&B: 15:2

10/02/2015 Michael Herrmann RL 11



Feudal RL (Dayan and Hinton, 1995)
Quotes

Reward Hiding:

If a sub-manager fails to achieve the sub-goal set by its
manager it is not rewarded
Conversely, if a sub-manager achieves the sub-goal it is given it
is rewarded, even if this does not lead to satisfaction of the
manager’s own goal.
In the early stages of learning, low-level managers can become
quite competent at achieving low-level goals even if the
highest level goal has never been satisfied.

Information Hiding:

Managers only need to know the state of the system at the
granularity of their own choices of tasks.
A super-manager does not know what choices its manager has
made to satisfy its command.

10/02/2015 Michael Herrmann RL 11



Feudal RL (Dayan and Hinton, 1995)

Lords dictate subgoals to
serfs
Subgoals = reward
functions?
Demonstrated on a
navigation task
Markov property problem

Stability?
Optimality?

P. Dayan and G. E. Hinton. "Feudal reinforcement learning. NIPS (1993): 271-271.

10/02/2015 Michael Herrmann RL 11



Hierarchical Abstract Machines (HAM), (R. Parr, 1998)

Policies of a core MDP (M) are defined as programs which
execute based on own state and current state of core MDP
HAM policy ≈ collection of FSMs: {Hi}
Four types of states of Hi

Action: Generate action (forM) based on state ofM and
currently executing Hi

at = π
(
mi

t , st
)
∈ Ast

where mi
t is the current state of Hi and st is the current state

ofM; resulting in a state change inM
Call: Suspend Hi and start Hj setting its state based on st
Choose: (Non-deterministically) pick the next state of Hi
Stop: return control to calling machine (and continue there)

10/02/2015 Michael Herrmann RL 11



State Transition Structure in HAM

Upon hitting a obstacle the choose action starts (recursively) either
follow-wall or back-off

HAM H: Initial machine + closure of all machine states in all
machines reachable from possible initial states of the initial machine
10/02/2015 Michael Herrmann RL 11



HAM ◦ MDP = SMDP

Composition of HAM and core MDP defines an SMDP
Only actions of the composite machine = choice points

These actions only affect HAM part

As an SMDP, things run autonomously between choice points

What are the rewards?

Moreover, optimal policy of the composite machine only
depend on the choice points!
There is a reduce (H ◦M) whose states are just choice points
of the original H ◦M (i.e. Action, Call, Stop are contracted
into neighbouring choices).
We can apply SMDP Q-learning to keep updates manageable

10/02/2015 Michael Herrmann RL 11



Partial Policies
Example: Parr’s Maze Problem

TraverseHallway(d) calls
ToWallBouncing and
BackOut.
ToWallBouncing(d1, d2 )
calls ToWall, FollowWall
FollowWall(d)
ToWall(d)
BackOut(d1, d2 ) calls
BackOne, PerpFive
BackOne(d)
PerpFive(d1, d2 )

10/02/2015 Michael Herrmann RL 11



Partial Policies
Results on Parr’s Maze Problem

Shown is value of starting state. “Flat” Q is ultimately better.

10/02/2015 Michael Herrmann RL 11



Acknowledgements

Some material was adapted from web resources associated with
Sutton and Barto’s Reinforcement Learning book (. . . before being
used by Dr. Subramanian Ramamoorthy in this course in the
previous years.)
Some slides are adapted from: S. Singh, Reinforcement Learning: A
Tutorial. Computer Science & Engineering, U. Michigan, Ann
Arbor. www.eecs.umich.edu/~baveja/ICML06Tutorial/

Recommended literature:

A. G. Barto and S. Mahadevan (2003) Recent advances in
hierarchical reinforcement learning. Discrete Event Dynamic
Systems 13:4, 341-379.
T. G. Dietterich (1999) Hierarchical Reinforcement Learning
(tutorial)
T. G. Dietterich (2000) Hierarchical reinforcement learning with the
MAXQ value function decomposition. J. Artif. Intell. Res. (JAIR),
13, 227-303.

10/02/2015 Michael Herrmann RL 11



Reinforcement Learning

Understanding a problems as an RL problem is beginning to solve it

(John Langford)

10/02/2015 Michael Herrmann RL 11


