RL 8: Value Iteration and Policy Iteration

Michael Herrmann

University of Edinburgh, School of Informatics

06/02/2015
Last time: Eligibility traces: TD(\(\lambda\))

Determine the \(\delta\) error:

\[
\delta_{t+1} = r_t + \gamma \hat{V}_t(s_{t+1}) - \hat{V}_t(s_t)
\]

Update all states the agent has visited recently:

\[
\hat{V}_{t+1}(s) = \hat{V}_t(s) + \eta \delta_{t+1} e_{t+1}(s)
\]

Update the eligibility traces to make sure that the update becomes weaker and weaker since the state has been visited the last time:

\[
e_{t+1}(s) = \begin{cases}
1 + \gamma \lambda e_t(s) & \text{if } s = s_t \\
\gamma \lambda e_t(s) & \text{if } s \neq s_t
\end{cases}
\]

Parameters:

- \(0 < \gamma \lesssim 1\) discount factor
- \((1 - \gamma)^{-1}\) time horizon
- \(\eta \gtrsim 0\) learning rate (Robbins-Monro condition)
- \(\lambda \lesssim 1\) eligibility trace parameter
- \(\varepsilon\) (or \(\beta\)) exploration rate (or temperature)
Overview: MC, DP and TD(λ)

- Dynamic programming
 - Value iteration
 - Policy iteration
 - Mixed schemes
- Monte Carlo methods
- Back to TD(λ)
Dynamic Programming

DP

- The art of solving problems by breaking them into subproblems
- Still computationally expensive
- Perfect model required ("certainty equivalence assumption")

RL

- Uses a similar approach but does not require a model and cannot rely on many data,
- Value functions used in the the way
- DP is of fundamental theoretical importance to RL
Dynamic Programming: Value iteration

- initialise an array $V(s) := 0$, for all $s \in S$
- set error threshold θ to a small positive number
- repeat
 - $\Delta := 0$
 - For each $s \in S$
 - $\text{temp} := v(s)$
 - $V(s) := \max_a \sum_{s'} p(s'|s, a) [r(s, a, s') + \gamma V(s')]$
 - $\Delta := \max \{\Delta, |\text{temp} - V(s)|\}$
 - until $\Delta < \theta$
- $\pi(s) := \arg \max_a \sum_{s'} p(s'|s, a) [r(s, a, s') + \gamma V(s')]$
Value determination possible by iteration, but sometimes also by direct computation:

\[V(i) = r(i) + \gamma \sum_{j} M_{ij}^{\pi(i)} V(j) \quad \forall i \in S \]

is a system of linear equations with dimension \(|S|\):

\[V = (I - \gamma M^{\pi})^{-1} r \]

The system does not necessarily have a solution. Theory, therefore, often assumes \(\gamma < 1\).

For real-time applications even MDPs are hard to compute: Try deterministic approximations.
Example from Stachnis/Burgard

A robot in a small grid world with “reflecting walls

Reward:
\[r = \pm 1 \text{ as shown or } r = -0.04 \text{ per step} \]

Optimal path from Start to Goal avoiding the trap.
Same example in a non-deterministic world

Robot does not exactly perform the desired action

If cost per step is low it pays to choose a safer path
The optimal policy in a non-deterministic problem

Optimal policy

$$\pi^* (i) = \arg \max_a \sum_j M_{ij}^a V (j)$$

M_{ij}^a: Probability of reaching state j from state i with action a.

$V (j)$: Value of state j.

Given the value function and the transition probabilities (Markovian!), we can easily calculate the optimal policy.

We know already a way to approximate the value function.
Value Iteration and Optimal Policy

1. Given environment

2. Calculate state values

3. Extract optimal policy

4. Execute actions
Note that state (3,2) has higher value than (2,3), but policy of (3,3) points to (2,3).

Policy is not the gradient of the value function!

\[\pi^* (i) = \arg \max_a \sum_j M_{ij}^a V(j) \]

Policy converges faster than the values of the value function.

For the policy to converge it is sufficient that the relations between the values are correct.

Can the we compute the optimal policy in a faster way?
Dynamic Programming: Policy Evaluation

- input π, the policy to be evaluated
- initialise an array $V(s) := 0$, for all $s \in S$
- set error threshold θ to a small positive number
- repeat
 - $\Delta := 0$
 - For each $s \in S$
 - $\text{temp} := v(s)$
 - $V(s) := \pi(a|s) \sum_{s'} p(s'|s, a) [r(s, a, s') + \gamma V(s')]$
 - $\Delta := \max \{ \Delta, |\text{temp} - V(s)| \}$
 - until $\Delta < \theta$
- output $V \approx V^\pi$
Dynamic Programming: Policy improvement

- policy-stable := true
- for each \(s \in S \)
 - temp := \(\pi(s) \)
 - \(\pi(s) := \arg \max_a \sum_{s'} p(s'|s, a) [r(s, a, s') + \gamma V(s')] \)
 - if temp \(\neq \pi(s) \), then policy-stable := false

- return \(\pi \), policy-stable
Dynamic Programming: Policy iteration

- Initialisation $V(s)$ and $\pi(s)$ for all $s \in S$
- Repeat
 - Policy evaluation (until convergence)
 - Policy improvement (one step)
- until policy-stable
- return π and V (or Q)
Given the (0.1, 0.8, 0.1)-probability model it is optimal to try to move from (4,3) and (3,2) by bumping to the walls.

Then, entering the trap at (4,2) has probability 0.
Discussion

- Value iterations turns Bellman optimality equation into an update rule
- Policy iteration: Try to get a better policy, using the currently best evaluation
 - Policy evaluation (until convergence)
 - Policy improvement (one step)
- Value iteration: Try to get a better evaluation, but use the best available policy
 - one step policy evaluation
 - one step policy improvement
- Combinations are possible:
 - truncated policy iteration
 - combinations of max and mean during evaluation step
- Generalised Policy Iteration
“Therefore in practice, value iteration should never be used. Implementation of modified policy iteration requires little additional programming effort yet attains superior convergence”. Puterman, 1994

The policy iteration is polynomial in the problems size, but Leslie Pack Kaelbling remarks that: “In the worst case the number of iterations grows polynomially in $(1 - \gamma)^{-1}$, so the convergence rate slows considerably as the discount factor approaches 1.”

Yet, value iteration is a straight-forward generalisation of the deterministic case. It may be more robust in dynamic problems, for higher uncertainty, or strong randomness.
policy evaluation and policy improvement processes interact

either complete convergence or truncated

Similar to EM algorithms
1. Perform Value Iteration and compute policy at each step of VI.
2. IF no change in policy on two successive steps, fix the policy and perform one step of Policy Iteration:
 1. Value Determination finding precise values for the fixed policy;
 2. policy evaluation
 3. IF no change in policy, return it as an optimal policy, ELSE go to 1.
Monte-Carlo methods

MC

- Solving reinforcement learning problems based on averaging sample returns
- For episodic problems
- No model required

RL

- Shares embeddedness
- Weights by recency
Monte-Carlo methods (First visit MC)

- Initialise
 - $\pi := \text{policy to be evaluated}$
 - $V := \text{an arbitrary state-value function}$
 - $\text{Returns}(s) := \text{an empty list for all } s \in S$

- Repeat
 - Generate an episode using π
 - For each state s appearing in the episode
 - $G := \text{return following the first occurrence of } s$
 - Append G to $\text{Returns}(s)$
 - $V(s) := \text{average}(\text{Returns}(s))$
Monte-Carlo control algorithm

- Initialise for all \(s \in S, \ a \in A(s) \)
 - \(\pi := \) arbitrary policy
 - \(Q(s, a) := \) an arbitrary state-action value function
 - \(\text{Returns}(s,a) := \) an empty list

- Repeat
 - Choose \(s_0 \) and \(a_0 \)
 - Generate an episode starting from \(s_0 \) and \(a_0 \) using \(\pi \)
 - For each pair \(s \) and \(a \) appearing in the episode
 - \(G := \) return following the first occurrence of \(s \) and \(a \)
 - Append \(G \) to \(\text{Returns}(s,a) \)
 - \(Q(s,a) := \) average(\(\text{Returns}(s,a) \))
 - For each \(s \) in the episode
 - \(\pi(s) := \arg \max_a Q(s,a) \)
Averaging return over episodes

MC methods (usually) do not bootstrap (values are not updated based on other values)

Episodes must terminate for every policy and must reach all state-action pairs

Sufficient exploration crucial

Available as on-policy or off-policy variants
Relation to TD with eligibility traces

- TD(\(\lambda\)) provides efficient estimates of the value function in Markovian reward processes
- It generalises Monte Carlo methods, but can be used as well in non-episodic tasks
- Appropriate tuning of \(\lambda\) (and \(\gamma\)) can lead to a significantly faster convergence than both Monte Carlo and TD(0).
Example: Driving home

<table>
<thead>
<tr>
<th>State</th>
<th>Elapsed Time (minutes)</th>
<th>Predicted Time to Go</th>
<th>Predicted Total Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>leaving office</td>
<td>0</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>reach car, raining</td>
<td>5 (5)</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>exit highway</td>
<td>20 (15)</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>behind truck</td>
<td>30 (10)</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>home street</td>
<td>40 (10)</td>
<td>3</td>
<td>43</td>
</tr>
<tr>
<td>arrive home</td>
<td>43 (3)</td>
<td>0</td>
<td>43</td>
</tr>
</tbody>
</table>
Changes when using TD with eligibility traces.

(This illustration is not to scale and does not reflect the accumulation of the changes)
Comparison: MC vs. TD

Expected time (\(=\) cost \(=\) neg. reward) to arrive home:

Changes recommended by MC (once at the end of episode)

Changes recommended by TD (updating one value per step)
- $10 for each car rented (must be available when request received)
- Two locations, maximum of 20 cars at each
- Cars returned and requested randomly
 - Poisson distribution, n returns/requests with probability $\frac{\lambda^n}{n!}e^{-\lambda}$
 - Location 1: Average requests = Average returns = 3
 - Location 2: Average requests = 4, Average Returns = 2
- Can move up to 5 cars between locations overnight (costs $2 each)

Problem setup:
- States, actions, rewards?
- Transition probabilities?
Jack’s car rental: Solution

Numbers indicate action: #cars to move

π_0, π_1, π_2, π_3, π_4, V_4

06/02/2015 Michael Herrmann RL 8
Jack’s car rental: Discussion

Difficult to adapt the solution to different conditions, e.g.

- Suppose first car moved is free but all other transfer cost $2
 - From location 1 to location 2 (not other direction!)
 - Because an employee would anyway go in that direction, by bus
- Suppose only 10 cars can be parked for free at each location
 - More than 10 incur fixed cost of $4 for using an extra parking lot

For more information see: cns.upf.edu/dani/materials/jack.pdf

Many slides are adapted from web resources associated with Sutton and Barto’s Reinforcement Learning book

... before being used by Dr. Subramanian Ramamoorthy in this course in the last three years.

Please check again the more formal considerations in the book Algorithms for Reinforcement Learning by C. Szepesvari, Chapters 2.1 and 4.1.

The first example today was adapted from “Autonomous Mobile Systems: The Markov Decision Problem Value Iteration and Policy Iteration by Cyrill Stachniss and Wolfram Burgard. These authors acknowledge: Russell & Norvig: AI – A Modern Approach (Chapter 17, pages 498ff)
Outlook: Towards practical problems

- efficient state representations
 - hierarchical
 - options
 - function approximations

- efficient policy representations

- efficient algorithms