
RL 8: Value Iteration and Policy Iteration

Michael Herrmann

University of Edinburgh, School of Informatics

06/02/2015

Last time: Eligibility traces: TD(λ)

Determine the δ error:
δt+1 = rt + γV̂t (st+1)− V̂t (st)

Update all states the agent has visited recently:
V̂t+1 (s) = V̂t (s) + ηδt+1et+1(s)

Update the eligibility traces to make sure that the update becomes
weaker and weaker since the state has been visited the last time:

et+1 (s) =

{
1+γλet (s) if s = st
γλet (s) if s 6= st

Parameters:
0 < γ . 1 discount factor
(1− γ)−1 time horizon
η & 0 learning rate
(Robbins-Monro condition)

λ . 1 eligibility trace
parameter
ε (or β) exploration
rate (or temperature)

06/02/2015 Michael Herrmann RL 8

Overview: MC, DP and TD(λ)

Dynamic programming

Value iteration
Policy iteration
Mixed schemes

Monte Carlo methods
Back to TD(λ)

06/02/2015 Michael Herrmann RL 8

Dynamic Programming

DP

The art of solving problems by breaking them into subproblems
Still computationally expensive
Perfect model required (“certainty equivalence assumption”)

RL

Uses a similar approach but does not require a model and
cannot rely on many data,
Value functions used in the the way
DP is of fundamental theoretical importance to RL

06/02/2015 Michael Herrmann RL 8

Dynamic Programming: Value iteration

initialise an array V (s) := 0, for all s ∈ S
set error threshold θ to a small positive number
repeat

∆ := 0
For each s ∈ S

temp := v(s)
V (s) := maxa

∑
s′ p(s ′|s, a) [r(s, a, s ′) + γV (s ′)]

∆ := max {∆, |temp− V (s)|}

until ∆ < θ

π (s) := argmaxa
∑

s′ p(s ′|s, a) [r(s, a, s ′) + γV (s ′)]

06/02/2015 Michael Herrmann RL 8

Remark

Value determination possible by iteration, but sometimes also
by direct computation:

V (i) = r (i) + γ
∑

j

Mπ(i)
ij V (i) ∀i ∈ S

is a system of linear equations with dimension |S |:

V = (I − γMπ)−1 r

The system does not necessarily have a solution. Theory,
therefore, often assumes γ < 1.
For real-time applications even MDPs are hard to compute:
Try deterministic approximations.

06/02/2015 Michael Herrmann RL 8

Example from Stachnis/Burgard

A robot in a small grid world with “reflecting walls

Reward:
r = ±1 as shown or
r = −0.04 per step

Optimal path from
Start to Goal
avoiding the trap.

06/02/2015 Michael Herrmann RL 8

Same example in a non-deterministic world

Robot does not exactly perform
the desired action

If cost per step is low it
pays to choose a safer path

06/02/2015 Michael Herrmann RL 8

The optimal policy in a non-deterministic problem

Optimal policy

π∗ (i) = argmax
a

∑
j

Ma
ijV (j)

Ma
ij : Probability of reaching state j form state i with action a.

V (j): Value of state j .

Given the value function and the transition probabilities
(Markovian!), we can easily calculate the optimal policy

We know already a way to approximate the value function.

06/02/2015 Michael Herrmann RL 8

Value Iteration and Optimal Policy

1. Given environment 2. Calculate state values

3. Extract optimal policy 4. Execute actions

06/02/2015 Michael Herrmann RL 8

Optimality

Note that state (3,2) has higher value than (2,3), but policy of (3,3) points to (2,3).

Policy is not the gradient of the value function!

π∗ (i) = argmax
a

∑
j

Ma
ijV (j)

Policy converges faster than the values of the value function.

For the policy to converge it is sufficient that the relations
between the values are correct.

Can the we compute the optimal policy in a faster way?

06/02/2015 Michael Herrmann RL 8

Dynamic Programming: Policy Evaluation

input π, the policy to be evaluated
initialise an array V (s) := 0, for all s ∈ S
set error threshold θ to a small positive number
repeat

∆ := 0
For each s ∈ S

temp := v(s)
V (s) := π(a|s)

∑
s′ p(s ′|s, a) [r(s, a, s ′) + γV (s ′)]

∆ := max {∆, |temp− V (s)|}

until ∆ < θ

output V ≈ V π

06/02/2015 Michael Herrmann RL 8

Dynamic Programming: Policy improvement

policy-stable := true
for each s ∈ S

temp := π(s)
π (s) := argmaxa

∑
s′ p(s ′|s, a) [r(s, a, s ′) + γV (s ′)]

if temp 6= π (s), then policy-stable := false

return π, policy-stable

06/02/2015 Michael Herrmann RL 8

Dynamic Programming: Policy iteration

Initialisation V (s) and π (s)
for all s ∈ S
Repeat

Policy evaluation (until
convergence)
Policy improvement (one
step)

until policy-stable
return π and V (or Q)

06/02/2015 Michael Herrmann RL 8

Value iteration vs. Policy Iteration: Example

Problem Solution (policy iteration)

Given the (0.1, 0.8, 0.1)-probability model it is optimal to try to
move from (4,3) and (3,2) by bumping to the walls.

Then, entering the trap at (4,2) has probability 0.

06/02/2015 Michael Herrmann RL 8

Discussion

Value iterations turns Bellman optimality equation into an
update rule
Policy iteration: Try to get a better policy, using the currently
best evaluation

Policy evaluation (until convergence)
Policy improvement (one step)

Value iteration: Try to get a better evaluation, but use the
best available policy

one step policy evaluation
one step policy improvement

Combinations are possible:

truncated policy iteration
combinations of max and mean during evaluation step

Generalised Policy Iteration

06/02/2015 Michael Herrmann RL 8

Conclusions on PI vs. VI

“Therefore in practice, value iteration should never be used. Imple-
mentation of modified policy iteration requires little additional pro-
gramming effort yet attains superior convergence". Puterman, 1994

The policy iteration is polynomial in the problems size, but Leslie
Pack Kaelbling remarks that: “In the worst case the number of
iterations grows polynomially in (1− γ)−1, so the convergence rate
slows considerably as the discount factor approaches 1.”
(M. L. Littman, T. L. Dean, and L. P. Kaelbling. On the complexity of solving Markov decision
problems. Proc. 11th Ann. Conf. on Uncertainty in AI, 1995.)

Philosophical arguments: E. B. Baum asks in What is Thought?
(MIT, 2004) “What it fundamentally wrong with value iteration?”

Yet, value iteration is a straight-forward generalisation of the
deterministic case. It may be more robust in dynamic problems, for
higher uncertainty, or strong randomness.

06/02/2015 Michael Herrmann RL 8

Generalised Policy Iteration

policy evaluation and policy
improvement processes interact
either complete convergence or
truncated

Similar to EM algorithms

06/02/2015 Michael Herrmann RL 8

Combined Value-Policy Iteration
E. Pashenkova (1996)

1 Perform Value Iteration and compute policy at each step of VI
2 IF no change in policy on two successive steps, fix the policy

and perform one step of Policy Iteration:
1 Value Determination finding precise values for the fixed policy;
2 policy evaluation
3 IF no change in policy, return it as an optimal policy, ELSE go

to 1.

06/02/2015 Michael Herrmann RL 8

Monte-Carlo methods

MC

Solving reinforcement learning problems based on averaging
sample returns
For episodic problems
No model required

RL

Shares embeddedness
Weights by recency

06/02/2015 Michael Herrmann RL 8

Monte-Carlo methods (First visit MC)

Initialise

π := policy to be evaluated
V := an arbitrary state-value function
Returns(s):= an empty list for all s ∈ S

Repeat

Generate an episode using π
For each state s appearing in the episode

G := return following the first occurrence of s
Append G to Returns(s)
V (s) := average(Returns(s))

06/02/2015 Michael Herrmann RL 8

Monte-Carlo control algorithm

Initialise for all s ∈ S, a ∈ A (s)

π := arbitrary policy
Q (s, a) := an arbitrary state-action value function
Returns(s,a):= an empty list

Repeat

Choose s0 and a0
Generate an episode starting from s0 and a0 using π
For each pair s and a appearing in the episode

G := return following the first occurrence of s and a
Append G to Returns(s,a)
Q(s, a) := average(Returns(s,a))

For each s in the episode
π (s) := argmaxaQ (s, a)

06/02/2015 Michael Herrmann RL 8

Discussion: MC

Averaging return over episodes
MC methods (usually) do not bootstrap (values are not
updated based on other values)
Episodes must terminate for every policy and must reach all
state-action pairs
Sufficient exploration crucial
Available as on-policy or off-policy variants

06/02/2015 Michael Herrmann RL 8

Relation to TD with eligibility traces

TD(λ) provides efficient estimates of the value function in
Markovian reward processes
It generalises Monte Carlo methods, but can be used as well in
non-episodic tasks
Appropriate tuning of λ (and γ) can lead to a significantly
faster convergence than both Monte Carlo and TD(0).

06/02/2015 Michael Herrmann RL 8

Example: Driving home

06/02/2015 Michael Herrmann RL 8

Eligibility Traces

...

Changes when using TD with eligibility traces.

(This illustration is not to scale and does not reflect the accumulation of the changes)

06/02/2015 Michael Herrmann RL 8

Comparison: MC vs. TD

Expected time (= cost = neg. reward) to arrive home:

Changes recommended by MC
(once at the end of episode)

Changes recommended by TD
(updating one value per step)

06/02/2015 Michael Herrmann RL 8

DP, MC and RL

06/02/2015 Michael Herrmann RL 8

Example: Jack’s car rental (4.2 in S+B)

06/02/2015 Michael Herrmann RL 8

Jack’s car rental: Solution

06/02/2015 Michael Herrmann RL 8

Jack’s car rental: Discussion

Difficult to adapt the solution to different conditions, e.g.

Suppose first car moved is free but all other transfer cost $2

From location 1 to location 2 (not other direction!)
Because an employee would anyway go in that direction, by bus

Suppose only 10 cars can be parked for free at each location

More than 10 incur fixed cost of $4 for using an extra parking
lot

For more information see: cns.upf.edu/dani/materials/jack.pdf

Many slides are adapted from web resources associated with Sutton and Barto’s Reinforcement Learning
book

. . . before being used by Dr. Subramanian Ramamoorthy in this course in the last three years.

Please check again the more formal considerations in the book Algorithms for Reinforcement Learning
by C. Szepesvari, Chapters 2.1 and 4.1.

The first example today was adapted form “ Autonomous Mobile Systems: The Markov Decision
Problem Value Iteration and Policy Iteration by Cyrill Stachniss and Wolfram Burgard. These authors
acknowledge: Russell & Norvig: AI – A Modern Approach (Chapter 17, pages 498ff)-

06/02/2015 Michael Herrmann RL 8

Outlook: Towards practical problems

efficient state representations

hierarchical
options
function approximations

efficient policy representations
efficient algorithms

06/02/2015 Michael Herrmann RL 8

