
RL 4: Q-Learning II

Michael Herrmann

University of Edinburgh, School of Informatics

23/01/2015



Last time: Q-Learning I (Points to remember)

Brute force approach: For each policy, π : S → A, sample
returns, and choose the policy with the largest expected return
Or: Allow samples from one policy to influence the estimates
made for another

Qt+1 (st , at)=Qt (st , at)+η (r (st , at)+γVt (st+1)−Qt (st , at))

(C. J. C. H. Watkins, 1989)

γ discount factor, η learning rate
Vt(s)=maxaQt(s, a), at =argmaxaQt(s, a) (greedy)
Off-policy algorithm (learning rule works well with exploration)
We need also an exploration rate: ε for ε-greedy exploration
The value of a state is the total discounted future reward
expected when choosing the action presently considered best
and continue with the policy presently considered optimal.
V (st) = r (st , a∗(st))+γV (st+1) (ideally, i.e. as learning goal)

23/01/2015 Michael Herrmann RL 4



Today

How does Q-learning work?
How to adapt the algorithm to a practical problem?
How to set up an RL experiment?

plus: Step-by-step example and a few videos

23/01/2015 Michael Herrmann RL 4



How does RL (Q-learning) work?

Environment: You are in state 5. You have 4 possible actions.
Agent: I’ll take action 2.

Environment: You received a reward of 7 units. You are now in
state 3. You have 3 possible actions.

Agent: I’ll take action 1.
Environment: You received a reward of -4 units. You are now in

state 6. You have 2 possible actions.
Agent: I’ll take action 2.

Environment: You received a reward of 8 units. You are now in
state 3. You have 3 possible actions.

...
... ...rt+1 = 7

rt+1 = 7
rt+2 = −4
rt+3 = 8

st = 5
st+1 = 3
st+2 = 6
st+3 = 3

at = 2
at+1 = 1
at+2 = 2
...at+1 = 1

23/01/2015 Michael Herrmann RL 4



Behaviour of the agent after learning

Q-learning generates trees (or forests, for multiple goals) with
goal(s) as root(s)
After initialisation or reset the agent starts at a random
position s (or at one of the starting states) and follows the
route to the/a goal that starts with the best action

a∗ = argmax
a
Q (s, a∗)

Under certain conditions this is also the route that provides
the maximal (discounted) reward
If the agent is perturbed (i.e. performs a random action) it
continues from the thus reached state towards the goal on a
possibly different route. The Q-value of the random action is
updated based on the new route.

23/01/2015 Michael Herrmann RL 4



Details of the algorithm
An artificial example

Assume that for action a0 state remains unchanged s0 = s1 and
that reward is deterministic r (s0, a0) > 0, then

Qt (s0, a0) = Qt−1 (s0, a0) + η (r (s0, a0) + V (s0)−Qt−1 (s0, a0))

Assume also greedy actions

a0 = argmax
a∈A

(Q (s0, a))

Because
V (s0) = max

a∈A
(Q (s0, a))

then Q (s0, a0) will grow without bounds.

If, in a different setting, r (at , st) = 0 for many or few steps before
finally r > 0 is achieved, Q would be the same.

=⇒ Value function should express discounted reward: γ < 1
23/01/2015 Michael Herrmann RL 4



Details of the algorithm
A similar artificial example

Assume st = st+1, and deterministic reward r (st , at) = rmax , then

Qt+1 (st , at) = Qt (st , at)+η (r (st , at) + γV (st+1 = st)−Qt (st , at))

Assume greedy action: at = argmaxa∈A (Q (st , a)), i.e.

V (s0) = max
a∈A

(Q (s0, a)) = Q (s0, a0)

convergence condition: η (rmax + γV (s0)−Qt (s0, a0)) = 0

rmax
1− γ

= Qt (s0, a0)

finite for γ < 1 (remember that γ is typically close to 1)

⇒ rmax/ (1− γ) ≥ Q (s, a) (except for initialisation effects)

useful for optimistic initialisation (if rmax is known)

23/01/2015 Michael Herrmann RL 4



Preliminary discussion of the relevant time scales

1 Behavioural time horizon 1/ (1− γ), γ discount factor,
2 Sampling in the estimation of the Q-function η (learning rate):
η small for stochastic problems, larger (η ≤ 1) for
deterministic problems

3 Exploration ε (ε-greedy strategy is usually not a bad choice)

Order of time scales:

1− γ � η � ε

Trials should include behaviourally relevant pieces of
trajectories. It should be possible that the agent finds reward
within the 1/ (1− γ) time horizon.
In stochastic problems several trial are needed before the value
function is significantly changed.
On an even slower time scale random actions are performed.
The exploration rate should decay such that the definition of
value (“continue with best policy”) is violated only rarely.

23/01/2015 Michael Herrmann RL 4



Hints for parameters choices

Should γ change during learning?

Yes, if “stepping stone”-reward is used, i.e. if part behaviours
receive small rewards γ can be be smaller (e.g. 0.9 for a
10-step horizon). Later when the full behaviour is learned then
γ may reach larger values (e.g. 0.99 for a 100-step horizon)
γ may be moved a bit towards 1, i.e. explore first short time
scales, later longer ones (assuming there is some reward in
both cases)
For episodic problems, γ = 1 can be reasonable

Should η decrease during learning?

In simple deterministic problems constant large values (e.g.
η = 0.25) are fine.
In stochastic problems and for convergence of the value
function, η should decay slowly (Robbins-Monro conditions →
later)

23/01/2015 Michael Herrmann RL 4



Hints for parameters choices

Practically, fix maximal number of trials M <∞ and set
η ∼ (1−m/M)α and ε ∼ (1−m/M)β with α < β,
m = 1, . . . ,M. Not theoretically justified.

Although exploratory actions will be rare, all relevant
combinations of actions need to occur during learning!
Adaptation of time scales: Initially 1− γ ≈ η ≈ ε is possible,
then decrease both ε and η, but ε faster than η to reach the
separation of time scales asymptotically.
Generally, parameter choices are problem-dependent and
require some intuition and exploration

23/01/2015 Michael Herrmann RL 4



How to set up RL experiments?

1 Define

states, actions, rewards, γ, η, ε, initialisation, timeouts, ...

2 Organise experiments

episodes (continuous or reset of the agent)
repetitions (for statistical evaluation)

3 Analysis

convergence of policy and/or value functions
performance in terms of reward
Did the reward correctly specify the desired behaviour?
significance, robustness, generalisability
Any improvements possible? [goto 1]

23/01/2015 Michael Herrmann RL 4



Example: Inverted pendulum or “cart-pole”

23/01/2015 Michael Herrmann RL 4



Example: Cart-Pole Problem

States: 4D state space, few states per dimension
Actions: a ∈ {Accelerate,Brake}
Reward: r = 1 for upright pendulum, r = −1 upon failure,
r = 0 otherwise,
Initialisation: Q (a, s)∼ N (0, 0.01)
Discount factor: γ = 0.995
Exploration: initially ε = 0.1, decaying over 100,000,000 time
steps
Learning rate η = 0.1

[more later]

23/01/2015 Michael Herrmann RL 4



Examples from literature

Elevator control (Barto and
Crites, 1996)
Learning in games:

Backgammon (Tesauro,
1994)
Go (Silver et al. 2007)

Learning in robotics

Controlling quadrupeds (Kohl and Stone, 2004)
Humanoids (Peters et al. 2003)
Helicopters (Abbeel et al. 2007)
Automotive control

Finance:

Optimal pricing (Tsitsiklis and Van Roy, 1999; Yu and
Bertsekas, 2007; Li et al., 2009)

23/01/2015 Michael Herrmann RL 4



More examples from the literature

More CS applications

Packet routing (Boyan and Littman, 1994)
Channel allocation (Singh and Bertsekas, 1997)
Dialogue strategy selection (Walker, 2011)

Operations research

targeted marketing (Abe et al. 2004)
maintenance problems (Gosavi, 2004)
job scheduling (Zhang and Dietterich, 1995)
pricing (Rusmevichientong et al. 2006
vehicle routing (Proper and Tadepalli, 2006)
inventory control (Chang et al., 2007)
fleet management (Simão et al., 2009)

Modelling biological mechanisms

23/01/2015 Michael Herrmann RL 4



Summary on examples

Advantages: Sampling, bootstrapping, on-line learning, little
domain knowledge required, theory based
Disadvantages:

Solutions usually non-generalisable
Finding a good solution is slow, does not scale well

Problem representation is critical: States, actions, rewards,
parameters, ...
Work on real-world examples has led to better algorithms:

Disambiguate stochastic state information
Reduce complexity of state/action spaces
Increase efficiency
Informative initialisation, pretraining in simulation

23/01/2015 Michael Herrmann RL 4


