
RL 3: Reinforcement Learning
Q-Learning

Michael Herrmann

University of Edinburgh, School of Informatics

20/01/2015

Last time: Multi-Armed Bandits (10 Points to remember)

MAB applications do exist (e.g. experimental design)
Exploration-exploitation dilemma: Both the reward and information
about the reward are important. Although dilemma in general not
unambiguously solvable, for MAB reasonable solutions exist.
Value = Expectation of the action-specific reward distributions
Qk = Qk−1 + 1

k (rk − Qk−1) yields the exact mean of rk for Q0 = 0
Qk+1 = (1− α) Qk +αrk+1 gives an exponentially weighted average
(for non-stationary problems; initialisation usually does not matter)
Regret: ρ = Tµ∗ −

∑T
t=1 r̄t where µ∗ = maxk µk

ε-greedy policy has asympt. regret, unless ε decays sufficiently slowly
Boltzmann action selection eQt (a)/τ∑N

b=1 eQt(b)/τ
with temperature τ is an

reasonable exploration scheme, but ε-greedy is often not bad, too.
Other policies, e.g. UCB, were proven asymptotically
regret-free.
Optimistic initialisation of Q often provides a good exploration (not
if reality is even better or if you are unlucky)

For more details see e.g. ICML 2011 Tutorial Introduction to Bandits: Algorithms and Theory,
Jean-Yves Audibert, Remi Munos https://sites.google.com/site/banditstutorial/

20/01/2015 Michael Herrmann RL 3

Overview

MAB
RL algorithms and applications
RL theory (MDPs)
POMDPs
RL in continuous space and time
Variants of RL

hierarchical RL
collective RL
multi-objective RL
intrinsically motivated RL
inverse RL
...

RL in biology and psychology

20/01/2015 Michael Herrmann RL 3

Towards associative RL and temporal credit assignment

Previously,

we were in a single casino and the only decision was to pull
one from a set of N arms
not more than a single state!

Now,

what if there is more than one state and each state has a
different reward distribution?
what if actions do not only earn you a reward but also move
you to another state?
what happens if you only obtain a net reward corresponding to
a long sequence of arm pulls (at the end)?

20/01/2015 Michael Herrmann RL 3

A simple example

A robot learns to “stop-and-back-up-and-turn” (a1) if near an
obstacle (s1) and to “go” (a2) if away from an obstacle (s2)
given the reward signals r (s2) = 1 and r (s1) = 0

How does the robot find
out that a2 is actually
better in s1 although s1
always implies r = 0?
How can the robot be
kept from preferring a1 in
state s2?
What can go wrong?

20/01/2015 Michael Herrmann RL 3

Brute force

1 For each possible policy, sample returns while following it
2 Choose the policy with the largest expected return

If a trial takes T time steps and a

Policy π assigns to each time t ≤ T an action a ∈ A by

π : T 7→ A,

where T is the set of decision times, i.e. |T | = T .

In principle, there are thus |A|T policies.
(assuming the cardinalities |A| and T are finite)

For the bandit problem with T = 1 this worked well

20/01/2015 Michael Herrmann RL 3

Improving beyond brute force

Consider a maze of 7× 7 fields, i.e.
|T | ≤ 49. There are 4 directions.
So there are at most 449 policies.
Many can be excluded when using the
immediate punishment given at bumping
into a wall.
Employing in addition an
inhibition-of-return principle usually even
less actions are admissible.
Many policies differ only in the part
after the goal or are equivalent (e.g.
“first up then left” may equal “first left
then up” if there were no obstacles).

G S

20/01/2015 Michael Herrmann RL 3

Improving beyond brute force

Branch and bound
Define policy based on states
s ∈ S: π : S 7→ A

Some states are inaccessible
(try not to represent what is
never experienced)
Avoid reaching at state
repeatedly in one run (e.g. by
intrinsic reward/punishment)
But: states need to
incorporate all the relevant
information∗

G S

An efficient solution.
Trivial action choices

are not shown.

Keep in mind for later:
Allow samples generated from one policy to influence the
estimates made for another.
Introduce a geometry on the set of states.

∗E.g. in the pendulum swing-up task states typically include position and velocity.
20/01/2015 Michael Herrmann RL 3

Preliminary considerations

If information about the task is available, consider using it
Configurations of different actions may be equivalent a1 = E
and a3 = N is as good as a1 = S and a3 = S (and a2 = W)
or even misleading: a1 = E and a2 = W is better than a1 = S
and a2 = S , although the globally best policy has a1 = S (and
a2 = W , a3 = N)

Earlier decisions may influence
later decisions (consider agent-
centred code: L, R , S , B)
Be that as it may, do we have a
chance to deal with problems of
this type if the are stochastic?
There are a number of
approaches, we choose one
(and consider others later)

G S

1

23

20/01/2015 Michael Herrmann RL 3

State-action values: Towards Q-Learning

Assume that the cardinalities |A| and |S| are finite, and T ⊆ N0.

We aim at expressing values related to state-action pairs:

Q (s, a)

Intuitively, the Q function expresses the expected∗ reward when
being in state s and applying a.

By definition, states contain the relevant information about the
system, i.e. the value of an action can depend only on the state
(i.e. not on time nor any hidden variables)

∗We will see later that ’expected’ does not imply here the estimation of
the mean reward when applying a many times in state s. It is rather a
measure of how much reward the agent will obtain when moving from
state to state (we will still have to average in a stochastic problem).

20/01/2015 Michael Herrmann RL 3

Value (beyond immediate reward)

In many cases, it may be worth to pass on a small immediate
reward, but in this way securing a bigger reward later (→ delayed
gratification).

Similarly, often there is no specific reward, e.g. in some states all
actions will lead to a ’reward’ r = 0

Although actions are thus not distinguishable w.r.t. reward, they
may lead the agent to other states.

We could still try to choose an action that leads us to a better
state.

⇒ There are now two types of reward: the immediate reward r
(which may be zero) and the value of the subsequent state

But what is the value of the subsequent state and how do we
obtain it?

20/01/2015 Michael Herrmann RL 3

State value and state-action value

The value V (s1) of a state s1 is defined as the value of the best
action that can be applied in this state

V (s1) = max
a∈A

(Q (s1, a))

Do we have to solve a MAB problem for each state?
These MAB problems would not be independent!
How do we trade value across the MABs?

20/01/2015 Michael Herrmann RL 3

Towards Q-Learning

Taken together, if s1 is reached from s due to a, then (preliminary)

Q (s, a) = r (s, a) + V (s1)

= r (s, a) + max
a∈A

(Q (s1, a))

Immediate reward

(if there is any)

plus
Value of the next state

(assuming best possible action)

s1 reached from s by action a

If we knew and apply the best action for each of the subsequent
states, then Q is just the sum of all future rewards.

20/01/2015 Michael Herrmann RL 3

Iterative learning rule

ρt = r (st−1, at−1) + V (st)

Combined reward = immediate reward + value of new state

Qt (st−1, at−1) = Qt−1 (st−1, at−1) + η (ρt −Qt−1 (st−1, at−1))

When observing a state transition from st−1 to st under action
at−1, then use a sliding average to estimate the combined reward.

Notes:

Not all actions a ∈ A need to be admissible in all states s ∈ S.
For Qt the parameter t refers to update steps, for st and at is
refers to the physical time of the system. Often it is
reasonable to keep the two parameters in sync.
Temporally at−1 is in between st−1 and st , we use the index
t − 1 by convention

20/01/2015 Michael Herrmann RL 3

The Q-learning algorithm (greedy non-discounted version)

1 Choose A, S and parameter η
2 Initialise Q0 (s, a) for all a ∈ A and all s ∈ S, e.g. using small

random values
3 Obtain information on state s0
4 For all t ≥ 1

1 Receive reward rt−1
2 Select and perform action at−1 = argmaxa∈A (Q (st−1, a))
3 Wait until time t, then obtain information on state st
4 Determine value of the new state

V (st) = max
a∈A

(Q (st , a))

5 Update the Q-function

Qt(st−1, at−1)=Qt−1(st−1, at−1)+η(rt−1+V (st)−Qt−1(st−1, at−1))

6 Test whether goal was reached → restart agent and goto 3
7 Test whether the agent is good enough → return(success)

20/01/2015 Michael Herrmann RL 3

Remarks on the Q-Learning algorithm

1 Action selected according to at−1 = argmaxa∈A (Q (st−1, a))
which is greedy. Other choices for the action selection are
possible, e.g. ε-greedy with decaying ε. This does not
(directly) affect the other parts of the algorithm.

2 The parameter η is a learning rate. It performs an exponential
average restricted to the times when a particular state-action
pair occurred.

3 Be careful when restarting the agent. The value for a goal
state should not be influenced by the following starting state.

4 Often it does not matter whether the Q-function has actually
converged. The precise values may not matter, as long as the
max-operations yield the correct result.

20/01/2015 Michael Herrmann RL 3

A silly example

Consider a person moving randomly through Edinburgh in search
for a nice place to have dinner. She eventually finds a place and
enjoys a great dinner.

Later the person doesn’t remember the location of the place but
she knows that it was near a statue of a dog.

Later the agents stumbles into the statue of the dog. She does not
remember how she got there, but she remembers that it was near
some elephant plate in shopping window.

Later she finds the elephant image again after having been at a
library.

Later she bumps into the dog again, and remembers that she was
that time in front of a museum before.

Much later all sites of Edinburgh are connected by some
“nearness” relation. And the agent knows that different sites are in
different “nearness” steps from that restaurant.
20/01/2015 Michael Herrmann RL 3

Value functions for delayed reward

The value of a state is the total future (discounted) reward that is
expected when choosing the presently known best action for this
state continue with the policy that is currently considered optimal.

V (st) = r (st , a∗ (st)) + r (st+1, a∗ (st+1)) + r (st+2, a∗ (st+2)) + · · ·

=
∞∑

k=t

r (sk , a∗ (sk))

Discounted version γ ≤ 1:

V (st) = r (st , a∗ (st)) + γr (st+1, a∗ (st+1)) + γ2r (st+2, a∗ (st+2)) + · · ·

=
∞∑

k=t

γk−tr (sk , a∗ (sk))

Discount parameter γ introduces a time horizon the length 1
1−γ of

which depends on the problem.

20/01/2015 Michael Herrmann RL 3

Discounted update

V (st) =
∞∑

k=t

γk−tr (sk , a∗ (sk))

= r (sk , a∗ (sk)) +
∞∑

k=t+1

γk−tr (sk , a∗ (sk))

= r (sk , a∗ (sk)) + γ

∞∑
k=t+1

γk−(t+1)r (sk , a∗ (sk))

= r (sk , a∗ (sk)) + γV (st+1)

The Q-function is updated analogously, but for an arbitrary action

Qt+1 (st , at) = Qt (st , at) + η (r (st , at) + γV (st+1)−Qt (st , at))

Now, immediate reward is preferable to delayed reward.

Q-learning was first introduced by C. J. C. H. Watkins (1989)
20/01/2015 Michael Herrmann RL 3

Toy Example: 1D maze
Problem set up

Track S: |S| = N, spaces numbered 1, . . . ,N,
States st ∈ S, state at time t ≥ 0
Actions: at ∈ A = {left, right} ≡ {−1,+1}

Reward: r (s, a) = r (s) =

{
1 if s = 1 (goal)
0 otherwise

Initialisation Q (s, a) = 0 ∀s ∈ S, a ∈ A (not really optimistic)
Exploration: ε-greedy with (initially) ε = 1, i.e. random moves
later ε→ 0 and at = argmaxa Q (st , a) for non-random moves
Starting at random state s0 = k ∈ S,
Restart after reaching goal or after timeout
Return after convergence of Q-function or at sufficient
performance

20/01/2015 Michael Herrmann RL 3

Toy Example: 1D maze, solution for η = 1

Random moves until st = 1, then rt = 1. Now, make any
move a and update Q (1, a) = 1, restart
If st+1 > 1, then rt+1 = 0. Perform a random move a leading
to st+2

if st+2 = 1 then update Q (2, a) = 0 + γV (1), restart [for this
to happen, a had to be “left”]
if st+2 > 1 then Q (st+1, a) remains 0

After ε decayed, we arrive at the value function

for N > k > 1: Q (k , left) = γk−1, Q (k , right) = γk−3

For the ends of the track: Q (1, right) = 1, Q (N, left) = γN−1.

Non-admissible moves are never updated: Q (1, left) = 0,
Q (N, right) = 0

Homework: Write a simulation for this example
20/01/2015 Michael Herrmann RL 3

Example 2: MAB as a Special Case

Q-learning for the N-armed bandit

States: s ∈ {C} (just one state, namely the Casino)
Actions: a ∈ {1, . . . , N}
state transitions C → C , ∀a
Reward: r = ra with ra ∼ N

(
µa, σ

2
a
)

Initialisation: Q0 (a, s) = 5×maxa {µa + σa} (optimistic)

Qt+1 (st , at) = Qt (st , at)+η (r (st , at)+γVt (st+1)−Qt (st , at))

= Qt (at)+η (r (at)+γVt −Qt (at))

Q̃t+1 (at) = Q̃t (at)+η
(
r (at)−Q̃t (at)

)
at =argmaxaQt+1 (a) =argmaxaQ̃t+1 (a)

20/01/2015 Michael Herrmann RL 3

Example 3: Another simple maze

States: s ∈ {7× 7 squares} with
obstacles (see previous lecture)
Actions: a ∈ {E , W , N, S}
Reward: r = 1 if s ≡ G , else
{r = 0 for any admissible move
and else r = −100}
Initialisation:
Q0 (a, s)∼ N (0, 0.01)

Soft-max exploration
(Boltzmann)

Result: Similar to the 1-D example.

G S

20/01/2015 Michael Herrmann RL 3

Example 4: Navigation in a grid world

States: s ∈ {4× 4 squares}
without obstacles
Actions: a ∈ {E , W , N, S}
Reward: r = 0 if s ≡ G (two of
the corners),
r = −1 for each step taken
discount factor: γ = 1 (no
discount)

G

G

Initialisation: Q (a, s)∼ N (0, 0.01)

Reset to random position after reaching the goal

20/01/2015 Michael Herrmann RL 3

Example 4: A fully explorable simple maze

−14

−18

−22

0

0 −20

−14

−14

−14

−22

−22

−22

−20

−20

−20

−18

−10 −3

0

−2

−2

−2

−2

−2

−3

−3

−1

−1

−2

−1

−3

average path length
for random exploration

minimal path length
using optimal policy

preferred actions
(may stay undecided)

1

2

3

4
1

2
3

4

-3

-2

-1

0

non-discounted
value function
over state
space

Adapted from
Mance E. Harmon:

Reinforcement Learning:
A Tutorial (1996)

20/01/2015 Michael Herrmann RL 3

Navigation in a grid world: Discussion of Example 4

Random exploration (i.e. ε-greedy with ε = 1) provides (in
this example; in general it’s better to slowly decrease ε) the
information about optimal policy.
If Q (s, a) is randomly initialised (and ε is small) then the
agent may easily get stuck.
The values at the goals are due to a special treatment of these
states. The reward is immediate reward plus value of next
state:

if the agent is reset to a random position for the next episode
then the next state may have a very low value
if the agent stays at G then another step is taken which has a
cost of -1, but is this not counted.
Practically, we are not using Q (G , a), only V (G) which is
defined to be zero an used to update Q (s, a) of the previous
state that led the agent to the goal.
If we did update Q (G , a) we should (make sure that we)
obtain Q (G , a) = 0 for a towards the wall, and Q (G , a) = −2
for the a’s back to the maze.

20/01/2015 Michael Herrmann RL 3

Example 5: Car Positioning
(A simplified version of the Mountain Car problem)

States include position and speed: s ∈ [−P,P]× [−V ,V]
discretrised into 40× 40 squares
Actions: a ∈ {accelerate forward, accelerate backward}
Reward: r = 1 if stopping in a small region near the goal,
i.e. both speed and position close to zero, r = 0 otherwise
Initialisation: Q0 (a, s)∼ N (0, 0.01)

Discount factor: γ = 0.95
Exploration: initially ε = 0.25, decaying over 100,000,000 time
steps
Learning rate η = 0.1

20/01/2015 Michael Herrmann RL 3

Example 5: Cart positioning by Q-learning

������������������
������������������
������������������
�����������������������

�����
�����
�����

goal

Accelerate cart such that it stops at a given position in min. time
Only one level of acceleration, action is to choose the sign
Size of goal region determines minimal state space resolution
Problems: relevant part of state space, slow convergence

target position

fo
rw

a
rd

b
a
c
k
w

a
rd

z
e
ro

s
p
e
e
d

preferred actions

0

1

value function

20/01/2015 Michael Herrmann RL 3

Example 5: Discussion

Extremely long learning time
How many time step does is take until the agent reaches a
new state?
Neighbouring states are doing largely the same
The boundary between the region is not very well resolved
even for a fine democratisation
Try (using information available during the learning process)

success stories: update not only previous time steps, but also
everything that lead to the final success
adaptive partitioning of the state space: In more homogeneous
regions use few states, whereas near critical boundaries more
state are needed (e.g. based on a weighted k-means algorithm)
use options: only update once new information becomes
available

20/01/2015 Michael Herrmann RL 3

Examples and Applications

Higher dimensional mazes, grid worlds, search trees etc.
Games, decision making, modelling the control of behaviour
Cart-pole, pendulum swing-up, multiple pendula, mountain-car
Chaos control, robot control
Industrial control, production control, automotive control,
autonomous vehicles control, logistics, telecommunication
networks, sensor networks, ambient intelligence, robotics,
finance (s. Real World Applications of Reinforcement Learning
at International Joint Conference on Neural Networks 2012)

20/01/2015 Michael Herrmann RL 3

Discussion and outlook

Q-learning is an off-policy algorithm: Learning the value of
state-action pairs independently of their position in a policy,
i.e. learning generalises across policies

Policies are not factorisable in general
If the algorithm contains exploration it is not performing
optimally and therefore is does not know the value of the
currently optimal policy
We will later compare on- and off-policy algorithms

Look-up table representation of the Q-function
(Q : S ×A → R) is not very efficient. We will later use
function approximation
Other exploration schemes are clearly possible
Convergence (Watkins and Dayan, 1992): We need a solid
theoretical basis for this
Complexity: [will take time]

20/01/2015 Michael Herrmann RL 3

Reading

Ch 6.4 of Sutton & Barto book deals with Q-learning only briefly.
Please check wikipedia and some of the papers on Q-learning, such
as:

Watkins, C. J., Dayan, P. (1992). Q-learning. Machine
Learning, 8(3-4), 279-292.
Ribeiro, C. H. C. (1999). A tutorial on reinforcement learning
techniques. In: Supervised Learning track tutorials of the 1999
International Joint Conference on Neuronal Networks.

20/01/2015 Michael Herrmann RL 3

