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Overview

1 Convergence
2 Complexity
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What means convergence of RL?

What you (may) get:

Value function or policy does not change anymore
Policy cannot be improved locally
Policy is globally optimal
Value function is optimal
Value function or policy is close to the optimum

What you pay for:

Simplified algorithms
Space (memory) complexity
Infinite learning times
Results with a certain probability
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Convergence of RL: General remarks

It is not possible to a priori assess if TD(λ) will perform better
than TD(0). See Sutton and Barto (1998).
Q-learning is an off-policy algorithm, which makes convergence
control easier. SARSA and Actor-Critics (see below) are less
easy to handle. It can be shown that under certain boundary
conditions SARSA and Q-learning will converge to the optimal
policy if all state-action pairs are visited infinitely often.
Actor-Critic algorithms: The Actor uses in general a set of
predefined actions. Actions are not easily generated de novo.
The Critic cannot generate actions on its own but must work
together with the Actor. Convergence is slow if these methods
are not augmented by additional mechanisms (Touzet and
Santos 2001).

F. Woergoetter and B. Porr (2008) Reinforcement learning. Scholarpedia.
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Szepesvari on contractions

Convergence results based on norm contractions
Basic results of the theory of Markovian decision processes
Results for discounted expected total cost
Based on contraction mappings and Banach’s fixed-point
theorem
Applied to proof a number of basic results about value
functions and optimal policies
see Szepesvári (2009) Algorithms for RL, Appendix A
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Convergence for Q-learning

Convergence guaranteed for look-up table case.

Extremes: greedy vs. random acting (n-armed bandit models)

Q-learning converges to optimal Q-values if

Every action is performed in every state infinitely often.
The action selection is asymptotically greedy.
The learning rate decreases according to the RM conditions

Convergence can be proven only with probability 1, as usually for
stochastic gradient algorithms.
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Convergence theorem for Q-learning

Theorem: If every action is performed in every state infinitely often,
0 ≤ γ < 1, the initial values and the rewards are bounded,
i.e. ∀a, s : |Q0 (s, a)| < C0, |r | < C1 then

∀s, a : lim
t→∞

Qt (s, a) = Q∗ (s, a)

i.e. globally optimal Q-values are asymptotically reached.
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Convergence proof I

Proof:

Let
∆t = max

s,a
|Qt (s, a)−Q∗ (s, a)|

denote the maximal error in the Q-table.

Because |r | < C = max {C0,C1} we have
Q∗ ≤

∑∞
t=t0 γ

t−t0C = C
1−γ

Because Q0 is bounded, also ∆0 is bounded.

How is ∆t affected of the agent move from state s to state s ′ using
action a?
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Convergence proof II

Immediate reward is identical for state s, but the max-Q action
might not be the same.

|Qt (s, a)−Q∗ (s, a)| =

∣∣∣∣(R+γmax
a′

Qt
(
s ′, a′

))
−
(
R+γmax

a′′
Q∗
(
s ′, a′′

))∣∣∣∣
= γ

∣∣∣∣max
a′

Qt
(
s ′, a′

)
−max

a′′
Q∗
(
s ′, a′′

)∣∣∣∣
≤ γmax

a′′′

∣∣Qt
(
s ′, a′′′

)
− Q∗

(
s ′, a′′′

)∣∣
≤ γ max

s′′,a′′′

∣∣Qt
(
s ′′, a′′′

)
− Q∗

(
s ′′, a′′′

)∣∣
= γ∆t

i.e. after visiting the state s and performing a, Q differs from the
optimal value by γ∆t
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Convergence proof III

We denote by τ0 the start before the experiment, and by τN the first
time when since τN−1 every state-action pair has been encountered.

From the previous slide we can conclude that

∆τN ≤ γ∆τN−1

The assumption the every state-action pair is visited infinitely
often, gives us already

lim
t→∞

∆t = 0

This completes the proof, but ...
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Comments on the convergence proof

We have assumed that R − R = 0 and should note that R is a
random variable, Which requires more averaging than
indicated by τN . The proof given here applies only to
deterministic worlds.
Also we did not enforce consistency within the Q-table which
is an asymptotic process (for η < 1), while here this is
understood as instantaneous. Formally this is not a problem
since Q∗ is consistent by definition
Exploration is not a problem for off-policy learning, but the
exploration rate needs to decay asymptotically, which was not
considered here either.
See the proofs (with probability 1) by Jaakola, Jordan & Singh
and Tsitsiklis
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How many iterations ? (TD, discounted-reward)

Theorem ∀t ‖Vt − V π‖∞ ≤ γt ‖V0 − V π‖∞
Proof: Let ∆t = ‖Vt − V π‖∞

Vt+1 = Rπ + γT πVt

≤ Rπ + γT π (Vk + ∆t)

= (Rπ + γT πVk) + γ∆t

= V π + γ∆t

Thus, if t > logγ
ε(1−γ)
Rmax , then ∀t

′ > t ‖Vt′ − V π‖∞ ≤ ε
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Matrix inversion method (TD)

Infinite-horizon (discounted reward)

V π = Rπ + γT πV π

V π − γT πV π = Rπ(
I|S | − γT π

)
V π = Rπ

V π =
(
I|S | − γT π

)
Rπ

Worst-case complexity if |S |3

see: Satinder Singh
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PAC-MDP Reinforcement Learning

PAC: Probably approximately correct (Valiant 84)
Extended to RL (Fiechter 95, Kakade 03, etc.).
Given ε > 0, δ > 0, A actions, S states, γ < 1.
We say a strategy makes a mistake each time step t s.t.
Q (st , at) < maxaQ (st , a)− ε
Let m be a bound on the number of mistakes that holds with
probability 1− δ.
Want m to be polynomial in A, S , 1/ε, 1/δ, 1/(1− γ).
Must balance exploration and exploitation!

adapted from Michael L. Littman’s talk on Model-based RL
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Q-learning not PAC-MDP

Family: initialisation, exploration, αt decay
Combination lock

Initialise low, random exploration (&-greedy)

2n to find near-optimal reward. Keeps resetting.
Needs more external direction.
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Optimism under uncertainty

Exploration bonuses help to integrate exploration
Shown to provide PAC-MDP guarantee (Kearns & Singh 02,
Brafman & Tennenholtz 02).
Key ideas:

Simulation lemma: Optimal for approximate model is
near-optimal.
Explore or exploit lemma: If can’t reach unknown states
quickly, can achieve near-optimal reward.
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Model-free PAC-MDP

Solved by Strehl, Li, Wiewiora, Langford & Littman 2006
Modifies Q-learning to build rough model from recent
experience.
Total mistakes in learning ∼ SA/

(
(1− γ)8ε4

)
Compare to model-based methods: Mistakes in learning
∼ S2A/ (1− γ)6 ε3

Lower bound, see Li 2009.
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Learning: Approximation of the value function

Approximation (“probably almost correct”)

Pr
(
sup
θ∈Θ

∣∣∣V̂ (θ)− V (θ)
∣∣∣ < ε

)
> 1− δ

Worst case in Θ has less than ε deviation with 1-δ confidence. How
many samples H do we need for given Θ, ε, δ.
Furthermore, we set a bound η for the likelihood ratio. Then:

H ≥ η
(

Vmax
ε

)2(
K (Θ) + log

(
8
δ

))
So we need also Vmax (maximum of the value) and K (Θ) the
complexity of the policy space (e.g. similar to a k-means clustering):
Assume there are experiences under k other policies θ1, . . . ,θk . If
they are sufficient to provide a good representative for any θ ∈ Θ
and for any k − 1 of them this is not the case then K (Θ) = k .
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Comparison of results for trajectories of length T

Peshkin & Mukherjee (2001)

O

((
Vmax
ε

)2

2T
(

K (Θ) + log
(
8
δ

)))
Kearns, Mansour, Ng (2000)

O

((
Vmax
ε

)2

22TVC (Θ) log (T )

(
T + log

(
Vmax

ε

)
+ log

(
1
δ

)))
use Vapnik-Chervonenkis (VC) dimension instead of covering
number K for describing the complexity of the policy space and
assume:

Partial reuse of policies
Fixed sampling policy (uniformly random)

VC is usually larger than K ; can be related to depth of tree

Exponential time dependency required for generality
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Using a model

Large state spaces

factorisable transition probabilities

POMDP with a restricted class of strategies Π

chose π ∈ Π with maximal return

what is sample complexity? From supervised learning

How many samples are needed to learn a function f ∈ F of a
certain complexity?
e.g. neural network realises h (x) with h ∈ H in order to
approximate f (x) . Assume |H| = n then typically only
O (log (n)) samples are needed to find a good h (n).
Since we are choosing from H the complexity of f does not
play a role (if |H| is small and |F| is large)

Assume a simulator (a generative model) of the POMDP
Find bounds on the required amount of simulated experience
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Sample complexity in a POMDP

Using the policy π ∈ Π and starting state s0, generate many
trials (MC-style) and find V π (s0)

Now for a different π′ ∈ Π what use can we make of these
trials?
If we cannot re-use these trials we are left with a complexity
O (n) if |Π| = n (instead of e.g. O (log (n)))
[Π does not have to be finite here]
Several methods for generating reusable trajectories:

trajectory trees (easier, but specific generative model)
random trajectories (harder, but simple generative model)
likelihood ratios

Number of required trajectories indep. of state space size
Linear in complexity of policy space
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Generative model

Given a POMDP M, then a model of M is

a randomised algorithm that for a given state-action pair (s, a)
outputs

a state s0 that is distributed according to the next-state
distribution P(·|s, a),
an observation o that is distributed according to the
distribution Q(·|s), and
the reward R(s, a).

Task: Let M be a POMDP with start state s0, and let Π be a class
of strategies. Find

opt(M,Π) = sup
π∈Π

V π(s0)

where V π(s0) is the expected return of π from s0.
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Convergence results of Q-learning

From: Tuomas Sandholm, Carnegie Mellon University.
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Convergence with function approximation

Somewhat incomplete for the analysis when function
approximation is used (Chapter 6 of Bertsekas and Tsitsiklis,
1996).
Bounding the behaviour of greedy policies obtained via
function approximation (Williams and Baird, 1993; and Singh
and Yee, 1994).
TD methods using function approximation are known to
converge (Sutton, 1984, 1992).
Function approximation with state aggregation has also been
been analysed (Tsitsiklis and van Roy, 1996).

Gosavi, Abhijit. "Reinforcement learning: A tutorial survey and recent
advances." INFORMS J. on Computing 21.2 (2009): 178-192.
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Conclusion and more

Conclusions

Plain algorithms theoretically accessible, but usually
prohibitively complex
Convergence difficult for function approximation
Model-based algorithms also theoretically preferable

More

Algorithms derived from PAC bounds
Martingales & reinforcement learning: Seldin et al. (2011,
2012)
Efficient sampling (Kearns, M. NIPS 12, 1999).
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