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Complexity of RL

“The (PO)MDP frameworks are fundamentally broken, not
because they are insufficiently powerful representations, but
because they are too powerful. We submit that, rather than
generalising these models, we should be specialising them if we
want to make progress on solving real problems in the real
world.”

T. Lane, W.D. Smart, Why (PO)MDPs Lose for Spatial Tasks and What to Do About It, ICML
Workshop on Rich Representations for RL, 2005.
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What is the Issue? (Lane et al.)

In our efforts to formalise the notion of “learning control”, we
have striven to construct ever more general and, putatively,
powerful models. By the mid-1990s we had (with a little bit of
blatant “borrowing” from the Operations Research community)
arrived at the (PO)MDP formalism (Puterman, 1994) and
grounded our RL methods in it (Sutton & Barto, 1998;
Kaelbling et al., 1996; Kaelbling et al., 1998).
These models are mathematically elegant, have enabled precise
descriptions and analysis of a wide array of RL algorithms, and
are incredibly general. We argue, however, that their very
generality is a hindrance in many practical cases.
In their generality, these models have discarded the very
qualities – metric, topology, scale, etc. – that have proved to
be so valuable for many, many science and engineering
disciplines.
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What is Missing in POMDPs?

POMDPs do not describe natural metrics in environment

When driving, we know both global and local distances

POMDPs do not natively recognise differences between scales

Uncertainty in control is entirely different from uncertainty in
routing

POMDPs conflate properties of the environment with
properties of the agent

Roads and buildings behave differently from cars and
pedestrians: we need to generalise over them differently

POMDPs are defined in a global coordinate frame, often
discrete

We may need many different representations in real problems
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Use separable (or hierarchical) representations

For the natural AC we found that for a special representation
of the value function we can improve the policy independently
of the quality of the approximation of the value function
We had to assume that the distribution of states and the
rewards (Q) are independent on the (parameters of the) policy
Experience: How to make optimal use of sample? Represent
samples by a model.
Models in RL are used in order to predict state transitions.
Can models be used also in the learning process?
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Use metrics of state spaces

Imposes a “speed limit” on the agent – the agent cannot transition
to arbitrary points in the environment in a single step.

Metric envelope bound for point-to-
point navigation in an open-space
gridworld environment. The outer
region is the elliptical envelope that
contains 90% of the trajectory pro-
bability mass. The inner, darker region
is the set of states occupied by an agent
in a total of 10,000 steps of experience
(319 trajectories from bottom to top).

Consequences:
Agent can neglect large parts
of state space when planning.
More importantly, however,
this result implies that control
experience can be generalised
across regions of state space.
If the agent learns a good
policy for one bounded region
of the state space, and it can
find a second region that is
homeomorphic to the first.
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Use local information: Manifold representations

A manifold representation
models the domain of the value
function using a set of
overlapping local regions, called
charts.
Each chart has a local co-
ordinate frame and a (local)
Euclidean distance metric.
Collection of charts and their
overlap regions forms the
manifold.
Embed partial value functions on
these charts, and combine them,
using the theory of manifolds, to
provide a global value function.

Recall Hierarchical RL
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Use point-based algorithms

Point-based algorithms have been surprisingly successful in
computing approximately optimal solutions for POMDPs.
What are the belief-space properties that allow some POMDP
problems to be approximated efficiently, explaining the
point-based algorithms’ success?
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Covering Number

Covering number of a space is the minimum number of given
size balls that needed to cover the space fully
Hsu et al. show that an approximately optimal POMDP
solution can be computed in time polynomial in the covering
number of Θ

Covering number also reveals that the belief space for some
interactive problems behaves more like the union of some
lower-dimensional spaces (for each agent) rather than an
high-dimensional space for all agents
Softens the difference between partially and fully observable
problems
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Three sources of error in RL

Misallocation of approximation resources to state space:
without knowing the optimal policy one cannot sample from
the distribution that it induces on the stochastic system’s state
space
Coupling of optimal decisions at each stage: finding the
optimal decision rule at a certain stage hinges on knowing the
optimal decision rule for future stages
Inadequate control of generalisation errors: without a model
ensemble averages must be approximated from training
trajectories

D. Blatt and A. Hero ICAPS Workshop 2006
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Types of RL approaches

Policy search: π : s → a
Value function based: (s, a)→ V
implies policy-based methods by search for the action that
maximised value
Model based (s, a)→ (s ′, r)
implies value-based methods by solving Bellman equations
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Policy evaluation process: Using a model

Sampling process is costly
Proxy collects the
samples from
environment and con-
structs an agent-centric
model that predicts the
effects of hypothetical
agent policies.
Agent learns by inter-
acting with the proxy.

from Peshkin & Shelton 2001
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Model based RL: Dyna

Relationships among
learning, planning, and

acting. The general Dyna architecture
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Dyna-Q

1 Record state s and select action a
2 Execute action a and record next state s ′ and reward r ,
3 Improve state-action value function using the sample
〈s, a, r , s ′〉

4 Improve world model M (s, a)→ (s ′, r)

5 Enter planning cycle
repeat:

1 Select a random state s̃ and a random action ã and
2 Apply the world model in order to obtain s̃ ′ and r̃
3 Improve state-action value function using the sample
〈s̃, ã, r̃ , s̃ ′〉

6 Go to 1
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Remarks on Dyna-Q

Dyna-Q uses Q learning as a subroutine
Dyna-Q uses “dreaming” to obtain a consistent value function
Dyna-Q+ includes an exploration bonus, e.g. κ

√
t (s, a),

where t (s, a) is the number of time steps since action a was
last executed in state s (in the real world), κ is the exploration
strength

Q (s, a)=Q (s, a)+η

(
r +γmax

b
Q
(
s ′, b

)
−Q (s, a)+ κ

√
s (s, a)

)
Dyna can be used with other algorithms e.g. Dyna-AHC
(adaptive heuristic critic including a prediction of return,
i.e. long-term cumulative reward)
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Dyna-AHC: Experiment

Trial is one trip from start state S
to goal state G. Shown are
averages over 100 runs.

Policies found by the middle
of the second trial. Black
square is the current location.

R. S. Sutton: Reinforcement Learning Architectures.
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When the Model Is Wrong

Blocking task:
Left environment for the first
1000 steps, then right one for
the rest.

Shortcut task:
Left environment for the first
3000 steps, then the right one
for the rest.

from the Sutton and Barto book
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Using a model

Large state spaces

factorisable transition probabilities

POMDP with a restricted class of strategies Π

chose π ∈ Π with maximal return

what is sample complexity? From supervised learning

How many samples are needed to learn a function f ∈ F of a
certain complexity?
e.g. neural network realises h (x) with h ∈ H in order to
approximate f (x) . Assume |H| = n then typically only
O (log (n)) samples are needed to find a good h (n).
Since we are choosing from H the complexity of f does not
play a role (if |H| is small and |F| is large)

Assume a simulator (a generative model) of the POMDP
Find bounds on the required amount of simulated experience
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Sample complexity in a POMDP

Using the policy π ∈ Π and starting state s0, generate many
trials (MC-style) and find V π (s0)

Now for a different π′ ∈ Π what use can we make of these
trials?
If we cannot re-use these trials we are left with a complexity
O (n) if |Π| = n (instead of e.g. O (log (n)))
[Π does not have to be finite here]
Several methods for generating reusable trajectories:

trajectory trees (easier, but specific generative model)
random trajectories (harder, but simple generative model)
likelihood ratios

Number of required trajectories indep. of state space size
Linear in complexity of policy space
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Generative model

Given a POMDP M, then a model of M is

a randomised algorithm that for a given state-action pair (s, a)
outputs

a state s0 that is distributed according to the next-state
distribution P(·|s, a),
an observation o that is distributed according to the
distribution Q(·|s), and
the reward R(s, a).

Task: Let M be a POMDP with start state s0, and let Π be a class
of strategies. Find

opt(M,Π) = sup
π∈Π

V π(s0)

where V π(s0) is the expected return of π from s0.
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Summary

Algorithms should work on the effective complexity as provided
by optimal representations
Models can help reducing the effects of sub-optimal
representations
Models in biology: The ubiquity of model-based reinforcement
learning (Doll, Simon and Daw, COiN 2012)
Models need to be learned and updated (exploration becomes
more important)
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Next lectures

14/3 Complexity of RL
18/3 apprenticeship learning, inverse RL
21/3 no lecture
25/3 revision, unified view, recent trends
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