RL 13: Algorithms for Large State Spaces

Michael Herrmann

University of Edinburgh, School of Informatics

04/03/2014

Overview

@ Algorithms for large state spaces
@ Basis functions

@ Reformulation of algorithms in terms of gradients

Large State Spaces

e Grid-world algorithms: V/ (s) is a vector, Q (s, a) a matrix
@ In large problems is the complexity often beyond practical
limits
o storage space

e exploration time
@ convergence time

e Generalisation and flexibility is low

Large State Spaces

e Alternative: Represent (e.g.) the value function in the form

Vo () = 07 (x) = > 001 ()

where x € RP denotes the state of the system, # € RV, and
 : RP = RN with ¢ (x) = (¢1(x), -, on (x))
@ Includes the look-up table representation for s = V (s) and

%(X):{l if int(x) = s

0 otherwise

@ Many other choices for the basis functions ¢ are possible.

Feature spaces

Vo (x) = 07 (x)

@ Linear (weighted) sum of non-linear functions
@ Can be universal function approximators (RBF network)
o) cRN
e parameter vector or weight vector
o carries the information about the current estimate of the value
function
o p: X >RV
@ . —

P(x) = (01 (x),-on (X))
i X = R is a basis function
@i (x): a feature of the state x
Examples: polynomial, wavelets, RBF, ...

@ mathematically convenient: easily differentiable = gradient

Radial basis functions

For a function f : RP — R choose
parameters such that

f(x)~0"p(x)
with ¢ : RP 5 RN, e.g.

Joe = x) o
pi(x) =exp | — 252 example:
N=26=(11)

withi=1,... N,
Determine § € RN by

|f — 67| — min
Solution: see e.g.
http://en.wikipedia.org/wiki/Radial _basis function network# Training

Factorial features: Tensor product construction™

Suppose X C X7 X Xa--+ X Xy (e.g. input from k sensors)

Let <p(m) . Xy — RIm define d,, features for m-th component of
xeX, 1<m<k

Tensor product ¢ = 1) @ o @ - .. @ (k) defines a feature
extractor with d = did> - - - di components indexed by the
multi-index i = (i1, i, ..., i) with 1 <ip, < dpm, m=1,2,... k

1 2 k
i = P(iy,.. i) (X) = 90,(-1) (x1) 9052) (x2) - ¢§k) (xk)

Assume that for each m, the d,, basis functions are aligned in a row long a
one-dimensional X}, component of the sensor space and only one weight is
non-zero: Then the tensor product would (approximately) indicate a position in
sensor space.

Tensor product construction: Example

Realisation by radial basis functions (RBF)

A Gxn) = (6 (fim =8]) 006 (fm =28)))

)

where the X,,{ are given (and possibly irregularly spaces) grid points
and the basis functions are often chosen as G (z) = exp (—%)

with some scale parameter o. E.g. Gaussian:

S xR,
Pl () =exp - -

or, symbolically,

EPRNALSTE

202

Kernel Smoothing

Similar to previous,

Nn, G(lx=x1)
VG (X) - ZH:‘ZN G (HX B X(m)H)

i=1 m=1

More generally,
N
Vi (x) =D igi (x)
i=1

satisfying the conditions g;j (x) > 0 and Z,N:l gi(x) =1vx

Vjy is an “averager”, which mixes the values of 6 differently at
different points in space

Variants of look-up table implementations

e Binary features: ¢ (x) € {0,1}"

Vo (x) = 0;
irpi(x)=1

Interesting case: only few components of ¢ are non-zero
(sparse) and the relevant indexes can be computed efficiently.
@ State aggregation: Indicator function over a certain region in
state space
o Tile coding: CMAC (Cerebellar Model Articulation Controller,
Albus 1971) uses partially overlapping hyper-rectangles

Curse of dimensionality

@ Tile-code spaces are usually huge = use only cells that are
actually visited

@ Example: a robot with 6 DoF is characterised by 6 positions
and 6 velocities, but e.g. cameras will produce
high-dimensional state spaces = use projection methods
(e.g. non-linear PCA)

e Often there are not too many data points = use
non-parametric methods

TD(A) with function approximation

@ Express changes of the value function as changes of parameters

@ Changes in parameters are usually small, so § rule
Oty1 = re + ’Y\A/t (St+1) — 2 (st)
Vet (st) == Ve (st) + ndesa
& AV (st) =nde41
becomes for Vj (x) = 0T ¢ (x)

A0 =1n(VeVy, (xt)) 0t+1 = 19 (x) 6e41

@ We assume that the (finite) changes of the value function are
linearly reflected in parameter changes and use the chain rule.

o Alternatively, use gradient descent on the fit function.

TD(A) with function approximation

Given initial values of # in Vy = 67 ¢ and of the eligibility traces

zp = (0,...,0) and previous state x; and next state x;;+1
Oer1 = rep1 + Vo, (Xer1) — Vi, (x¢)
zir1 = VoV, (X)) + Azt
Orv1 = O+ oedeq1ze41

.
where Vof (6) = (8%:‘(0) oo g f (9)) is the gradient of £ (8)

For Vi = 07 ¢ we have simply VgV (x) = (01 (%), ..., on (X))

Here, eligibility traces measure how much a parameter contributed
to V now and, weighted by A in the past.

Algorithm: TD(A) with function approximation

x last state, y next state, r immediate reward, 6 parameter vector,
z vector of eligibility traces

@ b r+10Tply] - 0Tp[x]
Q z— p[x]+)z

Q 0+ 0+ adz

Q return (0, 2)

Note: Supposes linear approximation of V

Linear SARSA for the mountain car problem

MOUNTAIN GAR Goal

Episode 9000,
- /f

A

Matt Kretchmar, 1995

04/03/2014 Michael Herrmann RL 13

O-learning with function approximation

Reca” Qt+1 (Xt’7 at) = Qt (Xt7 at) + « (r, + ’)’V (Xt+1) — Qt (Xt7 at))

Now

dtv1 = rep1 7V (Xeq1) — Qe (X, at)
Ory1 = Ot + eber1(Qp,) Vo Qo, (xt, at)

with Qp, = 0T and p : X x A — RN is a basis function over the
state-action space. V is given as a maximum of Q w.r.t. a.

Algorithm: Q-learning with function approximation

x last state, y next state, r immediate reward, 6 parameter vector

o d«r + vy maxgc OTSO [.ya a/] - HTSO [X7 3]
Q 0+« 0+ adp|x,a
© return 6

Convergence

@ Widely used but convergence can be shown only locally (local
optimal)

@ Even in the linear case, parameters may diverge (Bertsekas and
Tsitsiklis, 1996) due to biased sampling or for non-linear
approximations of V or Q.

@ Almost sure convergence to a unique parameter vector was
shown for linear approximation, ergodic Markov process with
well-behaved stationary distribution under the Robbins-Monro
conditions and for linearly independent ¢.

@ If convergent, the best approximation of the true value
function among all the linear approximants is found.

Gradient temporal difference learning

Goal: Make sure that divergence does not occur.

For simplicity, assume A = 0, and the underlying process (x,r, x') is
stationary and the optimal parameter vector 0* exists.

x last state, y next state, r immediate reward, «, 3 learning rates,
6 parameter vector, w auxiliary weight, minimise §2

@ dr+10Tply] -0Tplx
Qacop(x)'w

Q@0 0+alp(x)—re(y))a
Q w+—w+3(0—-a)e(x)

@ return (0)

Parameter update (step 3) modulated by a which induces normali-
sation of the projection of § onto ¢, thus avoiding divergence.

The choice of the function space

@ In look-up table algorithms averaging happens within the
elements of the table and is safe under the RM conditions

@ Here, however, approximation and estimation of the value
function may interfere

@ Target function V and approximation Vj: Approximation error

E=inf|[Vp— V|2

e Choosing sufficiently many features, the error on a finite
number of values (e.g. in an episodic task) can be reduced to
zero (in principle) = overfitting for possibly noisy
rewards/states

e Trade-off between approximation errors (model) and
estimation (values)

@ Use regularisation!

Fitted O-learning: Algorithm

Use all (recent) state-action pairs for the update = Monte Carlo

Q S« |[] // create empty list
Q@ fort=1to T // to present
Q@ V<« rip1+ymaxyepredict ((yei1,d),0) //estimate value

@ S <« append <S, ({xt, at}, \7))
@ end for
Q 0 <+ regress(S) // maximise likelihood of model

Notes: Prediction and regression should be matched. May diverge
for unsuitable regressor.

@ Large state space require intelligent representations
@ Continuous state spaces require function approximation

@ Algorithms do not necessarily become more complex, but lose
the property of global convergence

@ Choice of function space is an open problem (often not too
difficult for practical problems)

o Gradient POMDP?

@ Next time: Compatible representations

Acknowledgements

Some material was adapted from web resources associated with
Sutton and Barto's Reinforcement Learning book

Today mainly based on C. Szepesvari's book, sections 2.2 and 3.3.2

