
RL 13: Algorithms for Large State Spaces

Michael Herrmann

University of Edinburgh, School of Informatics

04/03/2014

Overview

Algorithms for large state spaces
Basis functions
Reformulation of algorithms in terms of gradients

04/03/2014 Michael Herrmann RL 13

Large State Spaces

Grid-world algorithms: V (s) is a vector, Q (s, a) a matrix
In large problems is the complexity often beyond practical
limits

storage space
exploration time
convergence time

Generalisation and flexibility is low

04/03/2014 Michael Herrmann RL 13

Large State Spaces

Alternative: Represent (e.g.) the value function in the form

Vθ (x) = θ>ϕ (x) =
N∑

i=1

θiϕi (x)

where x ∈ RD denotes the state of the system, θ ∈ RN , and
ϕ : RD → RN with ϕ (x) = (ϕ1 (x) , . . . , ϕN (x))>

Includes the look-up table representation for θs = V (s) and

ϕs (x) =

{
1 if int(x) = s
0 otherwise

Many other choices for the basis functions ϕ are possible.

04/03/2014 Michael Herrmann RL 13

Feature spaces

Vθ (x) = θ>ϕ (x)

Linear (weighted) sum of non-linear functions
Can be universal function approximators (RBF network)
θ ∈ RN

parameter vector or weight vector
carries the information about the current estimate of the value
function

ϕ : X → RN

ϕ (x) = (ϕ1 (x) , . . . , ϕN (x))>

ϕi : X → R is a basis function
ϕi (x): a feature of the state x
Examples: polynomial, wavelets, RBF, . . .

mathematically convenient: easily differentiable ⇒ gradient

04/03/2014 Michael Herrmann RL 13

Radial basis functions

For a function f : RD → R choose
parameters such that

f (x) ≈ θ>ϕ (x)

with ϕ : RD → RN , e.g.

ϕi (x) = exp

(
−‖x − x (i)‖2

2σ2

)

with i = 1, . . . ,N.

example:
N = 2, θ = (1, 1)

Determine θ ∈ RN by

‖f − θ>ϕ‖ → min
Solution: see e.g.
http://en.wikipedia.org/wiki/Radial_basis_function_network#Training

04/03/2014 Michael Herrmann RL 13

Factorial features: Tensor product construction∗

Suppose X ⊂ X1 ×X2 · · · × Xk (e.g. input from k sensors)

Let ϕ(m) : Xm → Rdm define dm features for m-th component of
x ∈ X , 1 ≤ m ≤ k

Tensor product ϕ = ϕ(1) ⊗ ϕ(2) ⊗ · · · ⊗ ϕ(k) defines a feature
extractor with d = d1d2 · · · dk components indexed by the
multi-index i = (i1, i2, . . . , ik) with 1 ≤ im ≤ dm, m = 1, 2, . . . , k

ϕi = ϕ(i1,...,ik) (x) = ϕ
(1)
i1 (x1)ϕ

(2)
i2 (x2) · · ·ϕ(k)

ik
(xk)

Assume that for each m, the dm basis functions are aligned in a row long a
one-dimensional Xm component of the sensor space and only one weight is
non-zero: Then the tensor product would (approximately) indicate a position in
sensor space.

04/03/2014 Michael Herrmann RL 13

Tensor product construction: Example

Realisation by radial basis functions (RBF)

ϕ(m) (xm) =
(
G
(∣∣∣xm − x (1)

m

∣∣∣) , . . . ,G (∣∣∣xm − x (dm)
m

∣∣∣))>
where the x (j)

m are given (and possibly irregularly spaces) grid points
and the basis functions are often chosen as G (z) = exp

(
− z2

2σ2

)
with some scale parameter σ. E.g. Gaussian:

ϕ(i1,...ik)(x)=exp

(
−
∑k

m=1 ‖xm−x (im)
m ‖2Xm

2σ2

)

or, symbolically,

ϕi (x)=exp
(
−
‖x−x i‖2X

2σ2

)

04/03/2014 Michael Herrmann RL 13

Kernel Smoothing

Similar to previous,

Vθ (x) =
N∑

i=1

θi
G
(
‖x − x (i)‖

)∑N
m=1 G

(
‖x − x (m)‖

)
More generally,

Vθ (x) =
N∑

i=1

θigi (x)

satisfying the conditions gi (x) > 0 and
∑N

i=1 gi (x) = 1 ∀x

Vθ is an “averager”, which mixes the values of θ differently at
different points in space

04/03/2014 Michael Herrmann RL 13

Variants of look-up table implementations

Binary features: ϕ (x) ∈ {0, 1}N

Vθ (x) =
∑

i :ϕi (x)=1

θi

Interesting case: only few components of ϕ are non-zero
(sparse) and the relevant indexes can be computed efficiently.
State aggregation: Indicator function over a certain region in
state space
Tile coding: CMAC (Cerebellar Model Articulation Controller,
Albus 1971) uses partially overlapping hyper-rectangles

04/03/2014 Michael Herrmann RL 13

Curse of dimensionality

Tile-code spaces are usually huge =⇒ use only cells that are
actually visited
Example: a robot with 6 DoF is characterised by 6 positions
and 6 velocities, but e.g. cameras will produce
high-dimensional state spaces =⇒ use projection methods
(e.g. non-linear PCA)
Often there are not too many data points =⇒ use
non-parametric methods

04/03/2014 Michael Herrmann RL 13

TD(λ) with function approximation

Express changes of the value function as changes of parameters
Changes in parameters are usually small, so δ rule

δt+1 = rt + γV̂t (st+1)− V̂t (st)

V̂t+1 (st) := V̂t (st) + ηδt+1

⇔ ∆V̂t+1 (st) = ηδt+1

becomes for Vθ (x) = θ>ϕ (x)

∆θ = η (∇θVθt (xt)) δt+1 = ηϕ (x) δt+1

We assume that the (finite) changes of the value function are
linearly reflected in parameter changes and use the chain rule.
Alternatively, use gradient descent on the fit function.

04/03/2014 Michael Herrmann RL 13

TD(λ) with function approximation

Given initial values of θ in Vθ = θ>ϕ and of the eligibility traces
z0 = (0, . . . , 0) and previous state xt and next state xt+1

δt+1 = rt+1 + γVθt (xt+1)− Vθt (xt)

zt+1 = ∇θVθt (xt) + λzt

θt+1 = θt + αtδt+1zt+1

where ∇θf (θ) =
(

∂
∂θ1

f (θ) , . . . , ∂
∂θN

f (θ)
)>

is the gradient of f (θ)

For Vθ = θ>ϕ we have simply ∇θVθ (x) = (ϕ1 (x) , . . . , ϕN (x))

Here, eligibility traces measure how much a parameter contributed
to V now and, weighted by λ in the past.

04/03/2014 Michael Herrmann RL 13

Algorithm: TD(λ) with function approximation

x last state, y next state, r immediate reward, θ parameter vector,
z vector of eligibility traces

1 δ ← r + γθ>ϕ [y]− θ>ϕ [x]

2 z ← ϕ [x] + λz
3 θ ← θ + αδz
4 return (θ, z)

Note: Supposes linear approximation of V

04/03/2014 Michael Herrmann RL 13

Linear SARSA for the mountain car problem

Matt Kretchmar, 1995

04/03/2014 Michael Herrmann RL 13

Q-learning with function approximation

Recall Qt+1 (xt , at) = Qt (xt , at) + α (rr + γV (xt+1)−Qt (xt , at))

Now

δt+1 = rt+1 + γV (xt+1)−Qt (xt , at)

θt+1 = θt + αtδt+1 (Qθt)∇θQθt (xt , at)

with Qθt = θ>ϕ and ϕ : X ×A → RN is a basis function over the
state-action space. V is given as a maximum of Q w.r.t. a.

04/03/2014 Michael Herrmann RL 13

Algorithm: Q-learning with function approximation

x last state, y next state, r immediate reward, θ parameter vector

1 δ ← r + γmaxa′∈A θ
>ϕ [y , a′]− θ>ϕ [x , a]

2 θ ← θ + αδϕ [x , a]

3 return θ

04/03/2014 Michael Herrmann RL 13

Convergence

Widely used but convergence can be shown only locally (local
optima!)
Even in the linear case, parameters may diverge (Bertsekas and
Tsitsiklis, 1996) due to biased sampling or for non-linear
approximations of V or Q.
Almost sure convergence to a unique parameter vector was
shown for linear approximation, ergodic Markov process with
well-behaved stationary distribution under the Robbins-Monro
conditions and for linearly independent ϕ.
If convergent, the best approximation of the true value
function among all the linear approximants is found.

04/03/2014 Michael Herrmann RL 13

Gradient temporal difference learning

Goal: Make sure that divergence does not occur.

For simplicity, assume λ = 0, and the underlying process (x ,r, x’) is
stationary and the optimal parameter vector θ∗ exists.

x last state, y next state, r immediate reward, α, β learning rates,
θ parameter vector, w auxiliary weight, minimise δ2

1 δ ← r + γθ>ϕ [y]− θ>ϕ [x]

2 a← ϕ (x)> w
3 θ ← θ + α (ϕ (x)− γϕ (y)) a
4 w ← w + β (δ − a)ϕ (x)

5 return (θ)

Parameter update (step 3) modulated by a which induces normali-
sation of the projection of δ onto ϕ, thus avoiding divergence.

04/03/2014 Michael Herrmann RL 13

The choice of the function space

In look-up table algorithms averaging happens within the
elements of the table and is safe under the RM conditions
Here, however, approximation and estimation of the value
function may interfere
Target function V and approximation Vθ: Approximation error

E = inf
θ
‖Vθ − V ‖2

Choosing sufficiently many features, the error on a finite
number of values (e.g. in an episodic task) can be reduced to
zero (in principle) ⇒ overfitting for possibly noisy
rewards/states
Trade-off between approximation errors (model) and
estimation (values)
Use regularisation!

04/03/2014 Michael Herrmann RL 13

Fitted Q-learning: Algorithm

Use all (recent) state-action pairs for the update ⇒ Monte Carlo

1 S ← [] // create empty list
2 for t = 1 to T // to present
3 V̂ ← ri+1 + γmaxa′∈A predict ((yt+1, a′) , θ) //estimate value

4 S ← append
(
S ,
(
{xt , at} , V̂

))
5 end for
6 θ ← regress (S) // maximise likelihood of model

Notes: Prediction and regression should be matched. May diverge
for unsuitable regressor.

04/03/2014 Michael Herrmann RL 13

Summary

Large state space require intelligent representations
Continuous state spaces require function approximation
Algorithms do not necessarily become more complex, but lose
the property of global convergence
Choice of function space is an open problem (often not too
difficult for practical problems)
Gradient POMDP?
Next time: Compatible representations

04/03/2014 Michael Herrmann RL 13

Acknowledgements

Some material was adapted from web resources associated with
Sutton and Barto’s Reinforcement Learning book

Today mainly based on C. Szepesvári’s book, sections 2.2 and 3.3.2

04/03/2014 Michael Herrmann RL 13

