
RL 11: POMDPs: Partially Observable Markov
Decision Processes

Michael Herrmann

University of Edinburgh, School of Informatics

25/02/2014

A trace through an MDP

Environment: You are in state 65. You have 4 possible actions.
Agent: I’ll take action 2.

Environment: You received a reinforcement of 7 units. You are
now in state 15. You have 3 possible actions.

Agent: I’ll take action 1.
Environment: You received a reinforcement of -4 units. You are

now in state 16. You have 2 possible actions.
Agent: I’ll take action 2.

Environment: You received a reinforcement of 8 units. You are
now in state 15. You have 3 possible actions.

...
...

How is this different for a POMDP?

25/02/2014 Michael Herrmann RL 11

Types of Planning Problems

State Action Model
Classical Planning observable deterministic accurate

MDP observable stochastic
POMDP partially observable stochastic

Two types of uncertainty

Stochasticity: Only parameters of a distribution can be known
Partial observability:

There is an underlying deterministic process that in principle
can be inferred
This deterministic process may govern the parameters of a
stochastic process

25/02/2014 Michael Herrmann RL 11

Background: COMDPs vs POMDPs

Same: set of states and actions, transitions and immediate rewards.

Different:

Previously: (regular)
discrete MDPs −→
completely observable
(COMDPs)
Value iteration
algorithm for COMDPs
gives a value per state
accurate state
information is available
Markovian

POMDPs are also discrete MDPs.
No certainty about the current state
How represent values and actions?
Probabilitistic observations replace
explicit state information
Observation model needed:
Bayesian estimation of states
Taking into account information
about previous states:
Non-Markovian for states, but
Markovian in terms of belief states.

25/02/2014 Michael Herrmann RL 11

Reminder (Bellmann for MDPs)

Bellman optimality equation

V ∗(s) = max
a

∑
s′

Pa
ss′
(
Ra

ss′ + γV ∗
(
s ′
))

Usually we can assume that Ra
ss′ = r (s, a) (i.e. independent on next state)

V ∗(s) = max
a

(
r (s, a) + γ

∑
s′

Pa
ss′V

∗ (s ′))

For continuous states x and actions u this becomes

V ∗(x) = max
u

(
r (x , u) + γ

∫
p
(
x ′|s, u

)
V ∗
(
x ′
)
dx ′
)

25/02/2014 Michael Herrmann RL 11

Value Iteration (for MDPs)

Bellman optimality equation:

V ∗(x) = max
u

(
r (x , u) + γ

∫
p
(
x ′|s, u

)
V ∗
(
x ′
)
dx ′
)

Value iteration

Vt(x) = max
u

(
r (x , u) + γ

∫
p
(
x ′|s, u

)
Vt−1

(
x ′
)
dx ′
)

Note: Vt−1 (x ′) is the previous iterate of the value function which
is evaluated at the next state x ′

Initialisation by
V1 (x) = max

u
r (x , u)

25/02/2014 Michael Herrmann RL 11

POMDPs: Beliefs instead of state information

Generalisation of MDPs: POMDPs
State is not observable: the agent relies on beliefs about its
state
Define the belief b of the agent about the its state and
formulate a POMDP with a value function over a belief space:

Vt (b) = max
u

(
r (b, u) +

∫
Vt+1

(
b′
)
p
(
b′|u, b

)
db′
)

Belief is a posterior distribution over states (see below)

b′(s ′) ∝ Ω(o | s ′, a)
∑
s∈S

T (s ′ | s, a)b(s)

25/02/2014 Michael Herrmann RL 11

Consequences

As beliefs are probability distributions POMDPs involve
functions on (continuous) probability distributions
Belief spaces are generally large
Because of continuity, belief spaces have a relatively simple
structure
If we assume

finite state space
finite action spaces
finite horizons

Then we can represent value functions by piecewise linear
functions

25/02/2014 Michael Herrmann RL 11

POMDP: Formal definition and belief propogation

(S ,A,O,T ,Ω,R), where

S is a set of states,
A is a set of actions,
O is a set of observations,
T is a set of conditional transition probabilities,
Ω is a set of conditional observation probabilities,
R : A× S → R is the reward function

Bayesian belief propogation:

b′(s ′) =
Ω(o | s ′, a)

∑
s∈S T (s ′ | s, a)b(s)∑

s′′∈S Ω(o | s ′′, a)
∑

s∈S T (s ′′ | s, a)b(s)

25/02/2014 Michael Herrmann RL 11

An Illustrative Example

Actions u1, u2
are terminal
actions
Action u3 is a
sensing action
that may lead
to a state
transition.
The horizon is
finite
γ = 1.
Reward is a
probability-
weighted
integral

r (x1, u1) = −100
r (x1, u2) = +100
r (x1, u3) = −1
p (x ′1|x1, u3) = 0.2
p (x ′1|x2, u3) = 0.8
p (z1|x1) = 0.7
p (z1|x2) = 0.3

r (x2, u1) = +100
r (x2, u2) = −50
r (x2, u3) = −1
p (x ′2|x1, u3) = 0.8
p (x ′2|x2, u3) = 0.2
p (z2|x1) = 0.3
p (z2|x2) = 0.7

25/02/2014 Michael Herrmann RL 11

Credit assignment in POMDPs

If we are totally certain that we are in state x1 and execute action
u1, we receive a reward of -100

If, on the other hand, we definitely know that we are in x2 and
execute u1, the reward is +100.

If the ’probability’ that we are in x1 is p1 and in x2 is p2 = 1− p1
then the belief b can be parametrised by p1.

r is a linear combination:

r (b, u1) = −100p1+100p2

= −100p1+100 (1−p1)

r (b, u2) = 100p1 − 50 (1−p1)

r (b, u3) = −1

25/02/2014 Michael Herrmann RL 11

Choice of a Policy (just for one time step)

At t = 1, we can use V1(b) to determine the optimal policy.

π1 (b) =

{
u1 if p1 ≤ 3

7

u2 if p1 >
3
7

This is the upper thick graph in the diagram on the previous slide

The obtained value function V1(b) is the maximum of the three
functions r (b, ui) at each point p1

V1(b) is piecewise linear and convex.

We see the r (b, u3) does not contribute to the result. When con-
sidering the first time step only, this component can be pruned, i.e.

V1 (b) = max {−100p1 + 100 (1− p1) , 100p1 − 50 (1− p1) ,−1}
= max {−100p1 + 100 (1− p1) , 100p1 − 50 (1− p1)}

25/02/2014 Michael Herrmann RL 11

Choice of a Policy (further time steps)

Considering one more time step the agent can also apply the
sensing action u3 (and finish then by taking u1 or u2)

Action u3 leads to an observation, say z1, the probability of which
depends on the (unknown) state

The observation can be used to update the belief using Bayes rule:

Prior: p1 = p (x1) and (1− p1);
Evidence p(z1|x1) = 0.7 and p(z1|x2) = 0.3;
Normalisation p (z1) = 0.7p1 + 0.3 (1− p1) = 0.4p1 + 0.3

Inserting this into the value function calculation

V1 (b|z1) = max

{
−100 0.7

p(z1)
p1 + 1000.3(1−p1)

p(z1)

+100 0.7
p(z1)

p1 − 500.3(1−p1)
p(z1)

}

= max
1

p (z1)

{
−70p1 + 30 (1− p1)
+70p1 − 15 (1− p1)

}
25/02/2014 Michael Herrmann RL 11

Value function

We should try to use the information given by the observation in such a way that the value function
remains picewise linear and convex.

25/02/2014 Michael Herrmann RL 11

Choice of a Policy (further time steps)

Expected belief before measuring zi

V̄1 (b|u3) = V1 (b|z1) p (z1) + V1 (b|z2) p (z2)

= max
{
−70p1 + 30 (1− p1)
+70p1 − 15 (1− p1)

}
+max

{
−30p1 + 70 (1− p1)
+30p1 − 35 (1− p1)

}

= max


−70p1 + 30 (1− p1)− 30p1 + 70 (1− p1)
−70p1 + 30 (1− p1) + 30p1 − 35 (1− p1)
+70p1 − 15 (1− p1)− 30p1 + 70 (1− p1)
+70p1 − 15 (1− p1) + 30p1 − 35 (1− p1)


= max


−100p1 + 100 (1− p1)

+40p1 + 55 (1− p1)
+100p1 + 50 (1− p1)


(last step after pruning)

25/02/2014 Michael Herrmann RL 11

Graphical solution

25/02/2014 Michael Herrmann RL 11

State Transitions (Prediction)

Selecting u3 may lead to a state change =⇒ belief update

p′1 = E [p (x1|x , u3)]

= p (x1|x1, u3) p1 + p (x1|x2, u3) p2

= 0.2p1 + 0.8 (1− p1) = 0.8− 0.6p1

Action u3 is taken into account when computing the value function

V̄1 (b|u3) = max


−100p1 + 100 (1− p1)

+40p1 + 55 (1− p1)
+100p1 + 50 (1− p1)


The agent can either perform u1 or u2, or first u3 and then u1 or u2
(the latter including belief update)

V̄1 (b) = max


−100p1 + 100 (1− p1)
100p1 + 50 (1− p1)
+51p1 + 42 (1− p1)


25/02/2014 Michael Herrmann RL 11

Value function: If in doubt (p1 ≈ 0.5) take an observation

p (z1)V1 (b|z1)

p (z2)V1 (b|z2)

25/02/2014 Michael Herrmann RL 11

Value function after executing u3

V̄1 (b) −→
Belief update

V̄1 (b|u3) −→

25/02/2014 Michael Herrmann RL 11

Why Pruning is Essential

Each update introduces additional linear components to V .

Each measurement squares the number of linear components.

Thus, an unpruned value function for t = 20 includes more than
10547,864 linear functions.

At t = 30 we have 10561,012,337 linear functions.

The pruned value functions at t = 20, in comparison, contains only
12 linear components.

The combinatorial explosion of linear components in the value
function are the major reason why POMDPs are impractical for
most applications.

25/02/2014 Michael Herrmann RL 11

Why Pruning is Essential

25/02/2014 Michael Herrmann RL 11

Example Application

25/02/2014 Michael Herrmann RL 11

Preliminary Summary on POMDPs

POMDPs compute the optimal action in partially observable,
stochastic domains.
For finite horizon problems, the resulting value functions are
piecewise linear and convex.
In each iteration the number of linear constraints grows
exponentially.
POMDPs so far have only been applied successfully to very
small state spaces with small numbers of possible observations
and actions.

25/02/2014 Michael Herrmann RL 11

Remaining lectures (outlook)

12 More on POMDPs, Bayes filters, robot experiments
13 RL in continuous space and time, i.e. RL and function
approximation
14 Policy gradient methods (Natural actor critic)
15 Distributed RL
16 Model-based reinforcement learning
17 Apreticeship learnign and inverse RL
18 Self-motivated RL
19 Mathematical aspects, complexity of RL
20 RL in neural network models, in biology and psychology

(not part of the exam)

25/02/2014 Michael Herrmann RL 11

Acknowledgements

Some material was adapted from web resources associated with
Sutton and Barto’s Reinforcement Learning book

. . . before being used by Dr. Subramanian Ramamoorthy in this
course in the last three years.

The main example of todays lecture has been used before also
elsewhere e.g. in Advanced AI by W. Burgard (Freiburg)

see also:
cs.brown.edu/research/ai/pomdp/index.html

25/02/2014 Michael Herrmann RL 11

