
RL 9: RL Algorithms and State Abstraction

Michael Herrmann

University of Edinburgh, School of Informatics

11/02/2014

Overview

Hierarchical RL
Temporal abstraction
Options
Semi Markovian Decision Problems (SMDP)
The elevator example
A brief look at MAXQ (Dietterich) [next time]

11/02/2014 Michael Herrmann RL 11

Reinforcement Learning

Understanding a problems as an RL problem is beginning to solve it

(John Langford)

11/02/2014 Michael Herrmann RL 11

Algorithms

Certainty equivalence
TD(0)
R-learning
Q-learning
SARSA
Actor-critic

11/02/2014 Michael Herrmann RL 11

“Certainty equivalence”

Consider trajectory: s0, a0, r1, s1, a1, r2, s2, a2, r3 s3, a3,
r4,s4, a4, r5, ...
Estimate the underlying MDP

transition S × A→ S ,

P (s|st , at) ≈ # {s = st+1|st , at}
{st , at}

reward S × A× S → R ∈ R,

P (r |st , at , st+1) ≈ # {r = rt+1|st , at , st+1}
{st , at , st+1}

Assume that the MDP is reconstructed with certainty
Compute the optimal policy for the MDP
Critical question: How do we generate the trajectory?

11/02/2014 Michael Herrmann RL 11

On-policy vs off-policy

On-policy

Start with a simple policy
Sample state space with this policy
Improve policy
May approach local minima

Off-policy

Gather information from (partially) random moves
Can incorporate exploration
Slowly reduce randomness (practically)

11/02/2014 Michael Herrmann RL 11

TD

Does not learn the underlying MDP, but learns the value
function directly
TD is on-policy, i.e. the resulting value function depends on
policy
Information from sampling the value function is not used
immediately to improve the policy
Can be used with policy or value iteration.

11/02/2014 Michael Herrmann RL 11

R-learning

Off-policy algorithm, in particular for non-discounted, non-episodic
problems

Consider average reward ρ = limn→∞
1
n
∑n

t=1 E [rt]

Value is define here as “above average”:

Ṽ (st) =
∞∑

k=1

E [rt+k − ρ]

Q̃ (st , at) =
∞∑

k=1

E [rt+k − ρ|st = s, at = a]

Relative value function (relative to the average)

ρ is adapted and measures (average) success

Implies a different concept of optimality in non-episodic tasks

11/02/2014 Michael Herrmann RL 11

R-learning: Algorithm

1 Initialise ρ and Q (s, a)

2 Observe st and choose at (e.g. ε-greedy), execute at

3 Observe rt+1 and st+1

4 Update

Qt+1(st , at)=(1− η)Qt(st , at)+η
(
rt+1 − ρt + max

a
Qt(st+1, a)

)
5 If Q (st , at) = maxaQ (st , a) then

ρt+1 =(1−α) ρt+α
(
rt+1+max

a
Qt(st+1, at+1)−max

a
Qt+1(s, a)

)
Hint: Choose η � α

11/02/2014 Michael Herrmann RL 11

R-learning example: Access-control queuing task

Customers pay 1, 2, 4, or 8 (this is a reward) of four different
priorities to be served
States are the number
of for free servers
Actions: customer at
the head of the queue
is either served or
rejected (and removed
from the queue)
Proportion of high
priority customers in
the queue is h = 0.5

Busy server becomes free with prob. p = 0.06 (p and h are
not known to the algorithm) on each time step

http://webdocs.cs.ualberta.ca/~sutton/book/ebook/node67.html

11/02/2014 Michael Herrmann RL 11

SARSA and Q-learning

SARSA and Q-learning can be represented as look-up tables
Policy is derived form current state-action value estimates

Q-learning:

Qt+1 (st , at) = (1− η)Qt (st , at) + η
(
rt+1 + γmax

a
Qt (st+1, a)

)
SARSA:

Qt+1 (st , at) = (1− η)Qt (st , at) + η (rt+1 + γQt (st+1, at+1))

SARSA: at = π (st), π is not necessary the argmaxaQ (st)

Q-learning: V (st+1) = maxaQ (st+1, a), at can be anything
SARSA is on-policy, Q-learning is off-policy
SARSA like TD but for state-action pairs, i.e. can learn policy
and value function simultaneously

11/02/2014 Michael Herrmann RL 11

Actor-Critic Methods

Policy (actor) is represented independently of the (state) value
function (critic)
A number of variants exist, in particular among the early
reinforcement learning algorithms

Advantages1

AC methods require minimal computation in order to select
actions which is beneficial in continuous cases, where search
becomes a problem.
They can learn an explicitly stochastic policy, i.e. learn the
optimal action probabilities. Useful in competitive and
non-Markov cases2.

1Mark Lee following Sutton&Barto
2see, e.g., Singh, Jaakkola, and Jordan, 1994

11/02/2014 Michael Herrmann RL 11

Actor-Critic Methods

Actor aims at improving
policy (adaptive search
element)
Critic evaluates the
current policy (adaptive
critic element)
Learning is based on the
TD error δt
Reward only known to the
critic
Critic should improve as
well

11/02/2014 Michael Herrmann RL 11

Example: Policies for the inverted pendulum

Exploitation (actor):
Escape from low-reward
regions as fast as possible
aim at max. r
e.g. Inverted pendulum
task: Wants to stay near
the upright position
preferentially greedy and
deterministic

Exploration (critic):
Find examples where
learning is optimal
aim at max. δ
e.g. Inverted pendulum
task: Wants to move away
from the upright position
preferentially
non-deterministic

11/02/2014 Michael Herrmann RL 11

State Abstraction

Abstraction in Learning and Planning

General problem in AI: Semantics of abstract knowledge
Reduction of complexity by exploiting task structure
How can different levels of abstraction be related?

spatial: states
temporal: time scales

Environmentally implied or repeated action trajectories
Options are also called: Skills, macros, temporally abstract
actions (Sutton, McGovern, Dietterich, Barto, Precup, Singh,
Parr, ...)
In other contexts also: Behavioural primitives, (elementary)
behaviours, schemata

11/02/2014 Michael Herrmann RL 11

Options

Sequences of actions that follow a common theme but are not of
fixed lengths

o = 〈I, π, β〉 call-and-return option

I ⊆ S set of starting states
π : S ×A → [0, 1] probabilistic policy to be follow during o
β : S → [0, 1] probability to terminate in each state

Example: Docking of a robot

I: all states in which charges is in sight
π: approach charger if recharging-necessary-bit is set
β: terminate when docked or charger not visible

11/02/2014 Michael Herrmann RL 11

Exploiting the structure of the environment: Rooms example

4 rooms
4 hallways
4 unreliable primitive
actions: up, left, right,
down; fail 33% of the
time
8 multi-step options (to
each room’s 2 hallways)
Given goal location,
quickly plan shortest
route
All rewards zero
γ = 0.9

11/02/2014 Michael Herrmann RL 11

Options and Semi-Markov Decision Processes (SMDP)

State Discrete time
Homogeneous discount
Continuous time
Discrete events
Interval-dependent
discount
Discrete time
Overlaid discrete
events
Interval-dependent
discount

Discrete-time SMDP overlaid on MDP (Can be analysed at either level)

For any MDP and any set of options, the decision process that
chooses among the options, executing each to termination, is an
SMDP.

11/02/2014 Michael Herrmann RL 11

Value Functions for Options

Value functions for options can be defined similar to the MDP case

V µ (s) = E {rt+1 + γrt+2 + . . . |µ, s, t}

Qµ (s, o) = E {rt+1 + γrt+2 + . . . |o, µ, s, t}

Consider policies µ ∈ Π (O) that can choose only among options

V ∗O (s) = max
µ∈Π(O)

V µ (s)

Q∗O (s, o) = max
µ∈Π(O)

Qµ (s, o)

Optimal w.r.t. to the Bellman criterion for O.

11/02/2014 Michael Herrmann RL 11

Consequence of choosing an option

Reward part

ro
s = E

{
r1 + γr2 + · · ·+ γk−1rk |s0 = s, o taken in s0, for k steps

}
Next state part

po
ss′ = E

{
γkδsk s′ |s0 = s, o taken in s0, for k steps

}

11/02/2014 Michael Herrmann RL 11

Synchronous Value Iteration Generalised to Options

Initialise :
V0 (s)← 0 ∀s ∈ S

Iterate :

Vk+1 (s)← max
o∈O

(
ro
s +

∑
s′∈S

po
ss′Vk

(
s ′
))
∀s ∈ S

Converges to the optimal value function, given the options:

lim
k→∞

Vk = V ∗O

Once V ∗O is computed, µ∗O can be determined.
If O = A, we are back at the conventional value iteration
If A ⊆ O, then V ∗O = V ∗

11/02/2014 Michael Herrmann RL 11

Rooms Example

11/02/2014 Michael Herrmann RL 11

If Goal6=Subgoal: Both primitive actions and options

11/02/2014 Michael Herrmann RL 11

Benefits of Options

Transfer

Solutions to sub-tasks can be saved and reused
Domain knowledge can be provided as options and subgoals

Potentially much faster learning and planning

By representing action at an appropriate temporal scale

Models of options are a form of knowledge representation

Expressive
Clear
Suitable for learning and planning

Much more to learn than just one policy, one set of values

framework for “constructivism”
for finding models of the world that are useful for rapid
planning and learning

11/02/2014 Michael Herrmann RL 11

Example V: Elevator control: State space and reward signal

218 possible combinations of
the 18 hall call buttons (only
one at top and bottom)
240 possible combinations of
the 40 car buttons
184 possible combinations of
positions and directions of
cars: up/down to target floor

2^18 · 2^40 · 18^4 ≈ 1022 statesFormulation of goal:

Minimise the average wait time
Minimise the average system time (wait time plus travel time)
Minimise the percentage of passengers that wait longer than
some dissatisfaction threshold (usually 60 seconds)
Minimise squared wait time (combination of first and third)

A. Barto, R. H. Crites. Improving elevator performance using RL. NIPS 8 (1996) 1017-1023.

11/02/2014 Michael Herrmann RL 11

Elevator control: Continuous time problem

Modelled as discrete event systems, but the amount of time
between events is a real-valued variable. A constant discount factor
γ is thus inadequate.

Use variable discount factor for cost cτ (here minimised, instead of
maximised reward)∫ ∞

0
e−ρτcτdτ instead of discrete version

∞∑
t=0

γtct

where ρ & 0 is an inverse time scale corresponding to 1− γ.
Now, for events at tx and ty the learning rule becomes

∆Q̂ (s, a)=η

(∫ ty

tx
e−ρ(τ−tx)cτdτ+e−ρ(ty−tx) min

b
Q̂ (u, b)−Q̂ (s, a)

)
Learning time 60,000 h of simulated elevator time (4 d @ 100 MIPS)

R.H. Crites and A.G. Barto. Elevator group control using multiple RL agents.Machine Learning 33 (1998) 235-262. (covered here only in part)

11/02/2014 Michael Herrmann RL 11

Elevator control: Evaluation and practical issues

Results

shown to “outperform all of the elevator algorithms with which
we compared them”
performance is restricted by certain rules (e.g. no reversals during tours)

today’s hybrid algorithms perform better

Conclusions

“One of the greatest difficulties in applying RL to the elevator
control problem was finding the correct temperature and
step-size parameters”
“The importance of focusing the experience of the learner onto
the most appropriate areas of the state space cannot be
overstressed” [represented functions by a neural network]
RL algorithms can learn from actual (or simulated) experience
and solve realistic stochastic dynamic optimisation problems

R.H. Crites and A.G. Barto. Elevator group control using multiple RL agents.
Machine Learning 33 (1998) 235-262. (covered here only in part)

11/02/2014 Michael Herrmann RL 11

Disadvantages of hierarchical RL (and a positive outlook)

Choice of options is difficult: Suboptimal choice of options
implies suboptimal behaviour
Option typically become rigid when high-level planning sets in
(Habits)
Negative transfer: Options learnt for one task may be
inappropriate for already for a relatively similar task
Algorithm’s complexity increases

=⇒ no free lunch

Combine option learning and intra-option learning
Define subgoals: Refine and simplify policy learning within
options

11/02/2014 Michael Herrmann RL 11

Acknowledgements

Some material was adapted from web resources associated with
Sutton and Barto’s Reinforcement Learning book

. . . before being used by Dr. Subramanian Ramamoorthy in this
course in the previous years.

Bryan Pardo, Northwestern University, EECS 349

http://webdocs.cs.ualberta.ca/~sutton/book/ebook/node66.html

A. G. Barto and S. Mahadevan (2003) Recent advances in
hierarchical reinforcement learning. Discrete Event Dynamic
Systems 13:4, 341-379.

Some slides are adapted from: S. Singh, Reinforcement Learning: A
Tutorial. Computer Science & Engineering, U. Michigan, Ann
Arbor. www.eecs.umich.edu/~baveja/ICML06Tutorial/

11/02/2014 Michael Herrmann RL 11

