
RL 7: Eligibility Traces

Michael Herrmann

University of Edinburgh, School of Informatics

04/02/2014

Last time: TD (0) [Points to remember]

TD(0) provides estimates of the value function in Markovian
reward processes
If the learning rate obeys the Robbins-Monro condition:∑∞

t=0 ηt =∞,
∑∞

t=0 η
2
t <∞, then the stochastic

approximation finds a deterministic solution with probability 1.
TD(0)

δt+1 = rt + γV̂t (st+1)− V̂t (st)

V̂t+1 =

{
V̂t (s) + ηδt+1 if s = st
V̂t (s) otherwise

Today: TD (λ) interpolates between TD (0) and MC, but can
be used as well in non-episodic tasks
Appropriate tuning of λ (and ε, γ) can lead to a significantly
faster convergence than MC or TD(0).

04/02/2014 Michael Herrmann RL 7

Monte-Carlo: Learning from Experience

Random sampling to obtain numerical results

Define a domain of possible inputs
Generate inputs randomly from a probability distribution over
the domain
Perform a deterministic computation on the inputs
Aggregate the results

Wikipedia

Applied to find solutions to problems that are not analytically
or deterministically numerically solvable.
Use information collected along a whole trajectory (requires
episodic tasks)

04/02/2014 Michael Herrmann RL 7

TD, DP, MC: Bootstrapping and Sampling

TD bootstraps: It updates its estimates of V based on other
estimates of V

DP (dynamic programming) also bootstraps

MC does not bootstrap: Estimates of complete returns are made at
the end the episode

TD samples: Its updates are based on one path through the state
space

MC also samples

DP does not sample: Its updates are based on all actions and all
states than can be reached from the updating state

Examples: See e.g. random walk example S+B sect. 6.2

04/02/2014 Michael Herrmann RL 7

Every-visit Monte-Carlo algorithm

Episodic problem, the k-th episode starting at time Tk

The starting state of each episode sTk is drawn from a
distribution π0.
Reward within episode k + 1

Rt =

Tk+1−1∑
s=t

γs−trs+1 for t ∈ [Tk ,Tk+1)

Obviously, V (s) = E [Rt |xt = x] (if xt has non-zero prob.)

V̂t+1 (s) = V̂t (s) + ηt

(
Rt − V̂t (s)

)
I{st=s}

Uses multi-step predictions =⇒ multi-step method
Also a stochastic approximation algorithm

04/02/2014 Michael Herrmann RL 7

MC

Old mathematics problem [Dirichlet]:

Given function f that has values everywhere on the boundary
of a region in Rn

Is there a unique continuous function u twice continuously
differentiable in the interior and continuous on the boundary,
such that u is harmonic in the interior and u = f on boundary?

In layman’s terms:
What is the shape
of a soap bubble in
a warped ring?

04/02/2014 Michael Herrmann RL 7

TD vs. MC

04/02/2014 Michael Herrmann RL 7

TD(0) or MC? (illustrative examples)

1

2

3 4

0.1

0.9
<r>=0.5

r=0

r=0

Initial states: 1 and 2; episode end at state 4
Episodes start more often in 1 than in 2
For every k visits of state 2, state 3 is visited 10k times
For TD(0) update is averaging rewards when leaving state 3
This is faster than update of 2, so 2 can follow this average
For MC the variance of Rt remains finite, so learning at 2 is
slower

04/02/2014 Michael Herrmann RL 7

TD(0) or MC? (illustrative examples)

1

2

3 4

0.1

0.9
r=0.5

r=0

r=0

Now with a fixed reward r = 0.5 when leaving state 3
For TD(0) update is averaging rewards when leaving state 3
Now 2 follows this average but on a slower time scale
For MC the value at 2 is updated for each episode, i.e. it
learns together with state 3

Conclusion: If the information in the reward signal is unreliable or
even misleading, then TD(0) can be beneficial, but it may not be
efficient =⇒ Unify MC and TD(0)

See Sutton, 1988 and Belezanay et al. 1999

04/02/2014 Michael Herrmann RL 7

Random walk example S+B sect. 6.2

04/02/2014 Michael Herrmann RL 7

Random walk example S+B sect. 6.2

04/02/2014 Michael Herrmann RL 7

Example: Driving home

04/02/2014 Michael Herrmann RL 7

Comparison: MC vs. TD

Expected time (= cost = neg. reward) to arrive home:

Changes recommended by MC
(once at the end of episode)

Changes recommended by TD
(updating one value per step)

04/02/2014 Michael Herrmann RL 7

Eligibility Traces for TD

TD learning can often be accelerated by the addition of
eligibility traces.
TD≡TD(0) updates the value function only for the
immediately preceding state
But rt+1 provides useful information for learning earlier
predictions as well
Extend TD by eligibility traces:

Short-term memory of many previous state that are updated
(though to a lesser extend the farther they are back)
Eligibility traces are usually implemented by an exponentially
decaying memory trace, with decay parameter λ.
TD should thus be more specifically TD(λ) with 0 ≤ λ ≤ 1
Eligibility extends less wide into the past than the time horizon
towards the future that is controlled by the discount rate.
TD(1) updates all the preceding predictions equally (for γ = 1)

www.scholarpedia.org/article/Temporal_difference_learning

04/02/2014 Michael Herrmann RL 7

TD(λ) [i.e. with eligibility traces]

TD(0):

V̂t+1 (s) =

{
V̂t (s) + ηδt+1 if s = st
V̂t (s) otherwise

TD(λ):

V̂t+1 (s) = V̂t (s) + ηδt+1et+1(s)

where e is a (replacing) eligibility trace with parameter[s] λ [and γ]

i.e. the value of all recently visited states is changed into the same
direction.

λ is called trace decay parameter

1-D maze example is solved essentially when the goal was found
once (it may take a bit more time to full convergence). Homework:
Test this numerically!

04/02/2014 Michael Herrmann RL 7

Eligibility Traces

...

Changes when using TD with eligibility traces.

(This illustration is not to scale and does not reflect the accumulation of the changes)

04/02/2014 Michael Herrmann RL 7

19-step random walk task (s. Barto and Sutton)

Learning rate

04/02/2014 Michael Herrmann RL 7

Eligibility Traces

TD(λ): Unification of TD (update only value of previous state) and
MC (update all states since start) using eligibility traces

Accumulating eligibility trace (e.g. in certain dynamical problems)

et+1 (s) =

{
γλet (s) + 1 if s = st
γλet (s) if s 6= st

Replacing eligibility trace (e.g. in a maze)

et+1 (s) =

{
1 if s = st
γλet (s) if s 6= st

S.P. Singh & R.S. Sutton. Reinforcement learning with replacing eligibility traces. Rec. Adv. in RL 1996

04/02/2014 Michael Herrmann RL 7

Summary

TD(λ) provides efficient estimates of the value function in
Markovian reward processes
It generalises MC methods, but can be used as well in
non-episodic tasks
Appropriate tuning of λ (and γ) can lead to a significantly
faster convergence than MC or TD(0).

Acknowledgements
Many slides are adapted from web resources associated with Sutton and Barto’s Reinforcement Learning
book

. . . before being used by Dr. Subramanian Ramamoorthy in this course in the last three years.

... actually, today I used some of my own material and followed the book Algorithms for Reinforcement
Learning by C. Szepesvari, Chapters 2.1 and 4.1.

04/02/2014 Michael Herrmann RL 7

TD vs. MC

04/02/2014 Michael Herrmann RL 7

Convergence of MC

Policy improvement still works if evaluation is done with MC

Qπk (s, πk+1 (s)) = Qπk
(
s, argmax

a
Qπk (s, a)

)
= max

a
Qπk (s, a)

≥ Qπk (s, πk (s))

= V πk (s)

The expected reward for πk+1 not worse than πk

We have to assume that the value function has stabilised, i.e.
an infinite number of episodes

04/02/2014 Michael Herrmann RL 7

Policy iteration with MC

Initialise Q (s, a), π (s) arbitrary ∀s, a; RList (s, a) empty list
Repeat

Generate an episode using exploring starts and π
for each pair s, a in the episode

R := return following the first occurrence of s and a
Append R to RList (s, a)
Q (s, a) := average over RList (s, a)

∀s in the episode: π (s) := argmaxaQ (s, a)

04/02/2014 Michael Herrmann RL 7

Q (λ) algorithm (s. Barto and Sutton)

04/02/2014 Michael Herrmann RL 7

Example I: Jack’s car rental (4.2 in S+B)

04/02/2014 Michael Herrmann RL 7

Jack’s car rental: Solution

04/02/2014 Michael Herrmann RL 7

Jack’s car rental: Discussion

Difficult to adapt the solution to different conditions, e.g.

Suppose first car moved is free but all other transfer cost $2

From location 1 to location 2 (not other direction!)
Because an employee would anyway go in that direction, by bus

Suppose only 10 cars can be parked for free at each location

More than 10 incur fixed cost of $4 for using an extra parking
lot

For more information see: cns.upf.edu/dani/materials/jack.pdf

04/02/2014 Michael Herrmann RL 7

Example II: Elevator control: State space and reward signal

218 possible combinations of
the 18 hall call buttons (only
one at top and bottom)
240 possible combinations of
the 40 car buttons
184 possible combinations of
positions and directions of
cars: up/down to target floor

2^18 · 2^40 · 18^4 ≈ 1022 statesFormulation of goal:

Minimise the average wait time
Minimise the average system time (wait time plus travel time)
Minimise the percentage of passengers that wait longer than
some dissatisfaction threshold (usually 60 seconds)
Minimise squared wait time (combination of first and third)

A. Barto, R. H. Crites. Improving elevator performance using RL. NIPS 8 (1996) 1017-1023.

04/02/2014 Michael Herrmann RL 7

Elevator control: Continuous time problem

Modelled as discrete event systems, but the amount of time
between events is a real-valued variable. A constant discount factor
γ is thus inadequate.

Use variable discount factor for cost cτ (here minimised, instead of
maximised reward)∫ ∞

0
e−ρτcτdτ instead of discrete version

∞∑
t=0

γtct

where ρ & 0 is an inverse time scale corresponding to 1− γ.
Now, for events at tx and ty the learning rule becomes

∆Q̂ (s, a)=η

(∫ ty

tx
e−ρ(τ−tx)cτdτ+e−ρ(ty−tx)min

b
Q̂ (u, b)−Q̂ (s, a)

)
Learning time 60,000 h of simulated elevator time (4 d @ 100 MIPS)

R.H. Crites and A.G. Barto. Elevator group control using multiple RL agents.Machine Learning 33 (1998) 235-262. (covered here only in part)

04/02/2014 Michael Herrmann RL 7

Elevator control: Evaluation and practical issues

Results

shown to “outperform all of the elevator algorithms with which
we compared them”
performance is restricted by certain rules (e.g. no reversals during tours)

today’s hybrid algorithms perform better

Conclusions

“One of the greatest difficulties in applying RL to the elevator
control problem was finding the correct temperature and
step-size parameters”
“The importance of focusing the experience of the learner onto
the most appropriate areas of the state space cannot be
overstressed” [represented functions by a neural network]
RL algorithms can learn from actual (or simulated) experience
and solve realistic stochastic dynamic optimisation problems

R.H. Crites and A.G. Barto. Elevator group control using multiple RL agents.
Machine Learning 33 (1998) 235-262. (covered here only in part)

04/02/2014 Michael Herrmann RL 7

