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Optimality in Physics

Fermat’s principle Huygens–Fresnel principle

Brachistochrone curve
(Johann Bernoulli, 1696)
⇒ Calculus of variations

31/01/2013 Michael Herrmann RL 6



Optimal Control

x : state
V : value

C : scalar cost
D: value of final state

Value at starting state

V (x(0), 0) = min
u

{∫ T

0
C [x(t), u(t)] dt + D[x(T )]

}
Hamilton-Jacobi-Bellman equation

V̇ (x , t) + min
u
{∇V (x , t) · F (x , u) + C (x , u)} = 0

with ẋ(t) = F [x(t), u(t)] determining the evolution of the state

N.B. This is copied from wikipedia and included here only for comparison. The important part begins on
the next slide.
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Optimality and Reward

Bellman’s Principle of Optimality: An optimal policy has the
property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard
to the state resulting from the first decision. (1957)

The reward hypothesis (Sutton): That all of what we mean by
goals and purposes can be well thought of as the maximisation of
the cumulative sum of a received scalar signal (reward).

Formulate learning problem such that the principle can be applied.
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Value functions: Definition

Policy π : S → A or a ∼ π (·|s) (means: P (at = a) = π (a|st))

Value function V π : S → R

V π (s) = E

[ ∞∑
t=0

γtrt+1|s0 = s

]

assuming that the initial probability π0 (s0) > 0

This is assuming an MDP with fixed π:
(
S,Pπ, π0) which is

extended to
(
S,Pπ, π0,R

)
. The latter is a Markov reward process

which arises naturally by assigning a reward distribution R (·|s) to
each state s or to each state-action pair according to

Rπ (r |s) =
∑
a∈A

π (a|s) R (r |s, a)
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Value functions for state-action pairs

Policy π : S → A or a ∼ π (·|s)

Value function Qπ : S ×A → R

Qπ (s, a) = E

[ ∞∑
t=0

γtrt+1|s0 = s, a0 = a

]

assuming that the initial probability π0 (s0) > 0 and that
π (s0) = a0 (deterministic) or π (s0, a0) > 0 (stochastic).

First action a0 is applied now, later actions are chosen by π.

[Note that the initial distribution π0 and the policy π are different
mathe- matical objects.]
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Optimal value functions

For MDPs an optimal policy always exists (s ∈ S, π fixed)

V ∗ (s) = sup
π

V π (s)

For state-action pairs we have (s ∈ S and a ∈ A)

V ∗ (s) = sup
a∈A

Q∗(s, a)

Q∗ (s, a) = r (s, a) + γ
∑
u∈S

Pa=π(s) (s, u) V ∗ (u)
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Optimality of Q

Suppose π satisfies∑
a∈A

π (a|s)Q∗ (s, a) = V ∗ (s)

for all s ∈ S. Then π is optimal.

Namely, π (·|s) selects the action(s) that maximise(s) Q∗ (s, ·).

So, optimality implies greediness and knowing Q∗ (s, a) allows us to
act optimally.

Analogously, knowing V ∗, r and P suffices to act optimally.
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Bellman Equations for deterministic policies in an MDP

How to find the value of a policy?

V π (s) = r (s, π (s)) + γ
∑
u∈S

P (s, π (s) , u) V π (u)

This is the Bellman equation for V π.

Define the Bellman operator for π as T π : RS → RS (maps value
functions to value functions)

(T πV ) (s) = r (s, π (s)) + γ
∑
u∈S

P (s, π (s) , u) V (u)

Then naturally,
T πV π = V π

which is nothing but a compact formulation of the equation on top
of this slide. This is a linear equation in V π and T π.

If 0 < γ < 1 then T ∗ is a contraction w.r.t. the maximum norm.
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Bellman optimality equations

How to characterise the optimal policy? Use the Bellman optimality
principle.

V ∗ (s) = sup
a∈A

(
r (s, a) + γ

∑
u∈S

P (s, a, u) V ∗ (u)

)

Bellman optimality operator T ∗ : RS → RS

(T ∗V ) (s) = sup
a∈A

(
r (s, a) + γ

∑
u∈S

P (s, a, u) V (u)

)
Then naturally,

T ∗V ∗ = V ∗

which is nothing but a compact formulation of the equation on top
of this slide.

If 0 < γ < 1 then T ∗ is a contraction w.r.t. the maximum norm.
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Bellman Operators for state-action value functions

T π : RS×A → RS×A, T ∗ : RS×A → RS×A

T πQ (s, a) = r (s, a) + γ
∑
u∈S

P (s, a, u)Q (u, π (s))

T ∗Q (s, a) = r (s, a) + γ
∑
u∈S

P (s, a, u) sup
b∈A
Q (u, b)

T π is a linear operator, but T ∗ is not. Both, T π and T ∗ are
contractions w.r.t. the maximum norm.

Defining Q (s, π (s)) = Qπ we have T πQπ = Qπ and Qπ is the
unique solution of this equation. Similarly, we have T ∗Q∗ = Q∗
and Q∗ is the unique solution of this equation.
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Dynamic programming for solving MDPs
Value iteration

Starting from arbitrary V0

Vt+1 = T ∗Vt

global convergence?

For state-action values functions

Qt+1 = T ∗Qt

Once Vt (or Qt) is close to V ∗ (or Q∗) then the greedy policy is
close to optimal.

Suppose Q is fixed and π is the greedy policy w.r.t. Q. Then

V π (s) ≥ V ∗ (s)− 2
1− γ

‖Q −Q∗‖∞

Singh and Yee, 1994
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Dynamic programming for solving MDPs
Policy iteration

Fix an arbitrary initial policy π0.

Policy evaluation: At iteration t > 0 compute the action-value
function underlying πt

Policy improvement: Given Qπt define πt+1 as the policy that is
greedy w.r.t. Qπt .

Works similar to value iteration, but policy evaluation is
computationally more costly.
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Summary on Bellman equations

The Bellman equation is the Bellman optimality equation. It
characterises the optimal strategy based on the Bellman
optimality principle
It uses the transition probabilities
Outlook: Use the actual process to estimate the transition
probabilities or to directly sample the value function (or the
state-action value function)
Next: value prediction
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Value prediction

The Bellman (optimality) equation characterises an optimal
value function
In general this equation is not solvable
Solution is possible by iterative schemes
Need to take into account the embeddedness of the agent
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Temporal Difference (TD) Learning for Value Prediction

Ideal value function

Vt =
∞∑
τ=t

γτ−trτ = rt + γrt+1 + γ2rt+2 + · · ·

= rt + γ (rt+1 + γrt+2 + · · · )

= rt + γ

∞∑
τ=t+1

γτ−(t+1)rτ

= rt + γVt+1

Real value function is based on estimates of Vt and Vt+1, which
may not obey this relation. Even if the estimates V̂t and V̂t+1 are
far from their true values we can at least require consistency, i.e.
minimise the absolute value of the δ error (δ for διαϕoρά)

δt+1 = rt + γV̂t+1 − V̂t
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The simplest TD algorithm

Let V̂t be the t-th iterate of a learning rule for estimating the value
function V .

Let st the state of the system at time step t.

δt+1 = rt + γV̂t (st+1)− V̂t (st)

V̂t+1 =

{
V̂t (s) + ηδt+1 if s = st
V̂t (s) otherwise

V̂t+1 (st) = V̂t (st) + ηδt+1 = V̂t (st) + η
(
rt + γV̂t (st+1)− V̂t (st)

)
= (1− η) V̂t (st) + η

(
rt + γV̂t (st+1)

)
The update of the estimate V̂ is an exponential average over the
cumulative expected reward.
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TD(0) Algorithm

Initialise η and γ and execute after each state transition

function TD0(s,r ,s1,V ) {

δ := r + γ ∗ V [s1]− V [s];

V [s] := V [s] + η ∗ δ;

return V ;

}
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Remarks on the TD(0) Algorithm

If the algorithm converges it must converge to a value function
where the expected temporal differences are zero for all states.
This state satisfies the Bellman optimality equation.
The continuous version of the algorithm can be shown to be
globally asymptotically stable
TD(0) is a stochastic approximation algorithm. If the system
is ergodic and the learning rate is appropriately decreased, it
behaves like the continuous version.
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Robbins-Monro conditions

How to choose learning rates? If

∞∑
t=0

ηt =∞,
∞∑

t=0

η2
t <∞,

then Vt (·) will behave as the temporally continuous variant

dV (·)
dt

= r + (γP − I ) V (·)

Choosing e.g. ηt = c t−α, the conditions hold for α ∈
(1

2 , 1
]
:

α > 1: goal is reachable even after been temporally trapped
α = 1: smallest step sizes, but still possible
α ≤ 1

2 : large fluctuations can happen even after long time
Iterate-averaging (Polyak & Juditsky, 1992) gives best possible asymptotic rate of convergence

Practically: fixed step sizes or finite-time reduction (see earlier slide)
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