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Syllabus

Reinforcement Learning
Multi-Armed Bandits
Q-learning
Markov Decision Processes
Dynamic programming
Monte-Carlo methods
Back to RL
POMDPs
Continuous problems
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Markov Chains

The stochastic process is said to have a Markovian property if

P(Xt+1 = j |Xt = i ,Xt−1 =kt−1, . . . ,X1 =k1,X0 =k0)=P(Xt+1 = j |Xt = i)

for t = 0, 1, . . . and every sequence i , j , k0, . . . , kt−1

These are stationary if time invariant. The we can write

pij = P (Xt+1 = j |Xt = i) = P (X1 = j |X0 = i)

P(n) =

 p(n)
00 · · · p(n)

0M
...

. . .
...

p(n)
M0 · · · p(n)

MM


Initial probabilities π0

i = P {X0 = i} for all i
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Markov Chains: First Passage Times

Number of steps from i to j for the first time is FPT
First Passage Times are random variables ⇒ mean FPT etc.
If i = j , this is the recurrence time

n-step recursive relationship for first passage probability

f (1)ij = p(1)
ij = pij

f (2)ij = p(2)
ij − f (1)ij pjj

...
f (n)ij = p(n)

ij − f (1)ij p(n−1)
jj − f (2)ij p(n−2)

jj − · · · − f (n−1)
ij pjj

For fixed i and j , f (n)ij ≥ 0 and it holds that
∑∞

n=1 f (n)ij ≤ 1∑∞
n=1 f (n)ii = 1 implies a recurrent state; absorbing if f (1)ii = 1

mean FPT:
∑∞

n=1 n f (n)ij

Positive recurrence: State is recurrent and has a mFPT<∞
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Markov Chains: Classification of States

State j is accessible from i if p(n)
ij > 0 (for some n)

If state j is accessible from i and vice versa, the two states are
said to communicate
As a result of communication, one may partition the general
Markov chain into states in disjoint classes

MC is irreducible if there is only one class

If the MC can only visit the state at integer multiples of t, we
call it periodic
Positive recurrent states that are aperiodic are called ergodic
states
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Markov Chains: Long-Run Properties

Inventory example: Interestingly, probability of being in state j
after, e.g., 8 weeks appears independent of initial level π0 of
inventory.

For an irreducible ergodic Markov chain, one has limiting probability

lim
n→∞

p(n)
ij = π∗j

i.e. the limit for each element pij does not depend on i .

π∗j =
M∑
i=1

π∗i pij ∀j = 1, . . . ,M

π∗ = (π∗1, . . . , π
∗
M) is an eigenvector of the matrix P = (pij).

Perron-Frobenius theorem: Matrices with positive entries have a
unique largest eigenvalue. For a probability matrix this EV is 1.

Reciprocal of π∗j gives the recurrence time mjj
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Markov Chains: Expected Average Cost

Sometimes aperiodic chain is a strong assumption. If we relax it,
the limiting probability needs a slightly different definition:

lim
n→∞

1
n

n∑
k=1

p(n)
ij = π∗j

Suppose you incur a (time-independent) cost C (Xt), using above
you can derive the long-run expected average over unit time as

lim
n→∞

{
E

[
1
n

n∑
k=1

C (xt)

]}
=

M∑
j=1

Cjπ
∗
j

Can be more elaborate in general, depending on cost function
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Markov Decision Model

Consider the following application: machine maintenance
A factory has a machine that deteriorates rapidly in quality
and output and is inspected periodically, e.g., daily
Inspection declares the machine to be in four possible states:

0: Good as new
1: Operable, minor deterioration
2: Operable, major deterioration
3: Inoperable

Let Xt denote this observed state

evolves according to some “law of motion”, so it is a stochastic
process
Furthermore, assume it is a finite state Markov chain
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Markov Decision Model

Transition matrix is based on the following:

states 0 1 2 3
0 0 7/8 1/16 1/16
1 0 3/4 1/8 1/8
2 0 0 1/2 1/2
3 0 0 0 1

Once the machine goes inoperable, it stays there until repairs

If no repairs, eventually, it reaches this state which is
absorbing!

Repair is an action –- a very simple maintenance policy

e.g., machine from state 3 to state 0
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Markov Decision Model

There are costs as system evolves:

State 0: cost 0
State 1: cost 1000
State 2: cost 3000

Replacement cost, taking state 3 to 0, is 4000 (and lost
production of 2000), so cost = 6000
The modified transition probabilities are:

states 0 1 2 3
0 0 7/8 1/16 1/16
1 0 3/4 1/8 1/8
2 0 0 1/2 1/2
3 1 0 0 0
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Markov Decision Model

What is the average cost of this maintenance policy?
Compute the steady state probabilities:

π∗0 =
2
13
, π∗1 =

7
13
, π∗2 =

2
13
, π∗3 =

2
13

(Long run) expected average cost per day

0π∗0 + 1000π∗1 + 3000π∗2 + 6000π∗3 =
25000
13

= 1923
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Markov Decision Model

Consider a slightly more elaborate policy:

Repair when inoperable or replace when needing major repairs

Permit one more thing: overhaul

Go back to minor repairs state (1) for the next time step
Not possible if truly inoperable, but can go from major to
minor

Transition matrix now changes a little bit
Key point about the system behaviour. It evolves according to

“Laws of motion”
Sequence of decisions made (actions from {1:none, 2:overhaul,
3:replace})

Stochastic process is now defined in terms of Xt and ∆t

Policy R is a rule for making decisions
Could use all history, although popular choice is (current)
state-based
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Markov Decision Model

There is a space of potential policies, e.g., (1:
none,2:overhaul,3: replace)

Policies d0 (R) d1 (R) d2 (R) d3 (R)

Ra 1 1 1 3
Rb 1 1 2 3
Rc 1 1 3 3
Rd 1 3 3 3

Each policy defines a transition matrix, e.g., for Rb

states 0 1 2 3
0 0 7/8 1/16 1/16
1 0 3/4 1/8 1/8
2 0 1 0 0
3 1 0 0 0

Which policy is best? Need costs. . . .
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Markov Decision Model

Cik= expected cost incurred during next transition if system is
in state i and decision k is made

state|decision 1 2 3
0 0 4 6
1 1 4 6
2 3 4 6
3 ∞ ∞ 6

The long run average expected cost for each policy may be
computed using

E (C ) =
M∑
i=0

Cikπ
∗
i

Rb is best (homework: check!)
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Extensions

Heuristic Search

Dynamic Programming: AO*, LAO*, RTDP, . . .

Factored MDPs

add planning graph style heuristics
use goal regression to generalize better

Hierarchical MDPs

hierarchy of sub-tasks and/or actions to scale better

Reinforcement Learning
Partially Observable Markov Decision Processes

noisy sensors, partially observable environment, popular in
robotics

adapted from Mausam: Markov decision problems, Ch. 17
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RL and Markov Decision Processes ... as used in Sutton & Barto
Agent-Environment Interface

Agent and environment interact at discrete time steps: t = 0, 1, 2,

Agent observes state at step t: st ∈ S
Produces action at step t : at ∈ A(st)

gets resulting reward: rt+1 ∈ R

and resulting next state st+1
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The Agent Learns a Policy

Policy at step t, πt :

a mapping from states to action probabilities πt (s, a):
probability that at = a when st = s

Reinforcement learning methods specify how the agent
changes its policy as a result of experience.
Roughly, the agent’s goal is to get as much reward as it can
over the long run
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On the Degree of Abstraction

Actions can be low level (e.g., voltages to motors), or high
level (e.g., accept a job offer), “mental” (e.g., shift in focus of
attention), etc.
States can be low-level “sensations”, or they can be abstract,
symbolic, based on memory, or subjective (e.g., the state of
being “surprised” or “lost”).
An RL agent is not like a whole animal or robot.
Reward computation is in the agent’s environment because the
agent cannot change it arbitrarily.
The environment is not necessarily unknown to the agent, only
incompletely controllable
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Goals and Rewards

Is a scalar reward signal an adequate notion of a goal? —
maybe not, but it is surprisingly flexible
A goal should specify what we want to achieve, not how we
want to achieve it
A goal must be outside the agent’s direct control — thus
outside the agent
The agent must be able to measure success:

explicitly;
frequently during its lifespan
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The reward hypothesis (Sutton)

That all of what we mean by goals and purposes can be well
thought of as the maximisation of the cumulative sum of a
received scalar signal (reward)
A sort of null hypothesis, time scales, stopping criteria needed
Probably ultimately wrong, but so simple we have to disprove
it before considering anything more complicated
MD problems are solved once optimal values are known
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Conclusion

A fixed policy in a MDP transforms a Markov Chain into a
Markov Chain with a (generally) different transition matrix
Q-learning is not the best example for MDPs
On-policy reinforcement learning algorithms are often based on
MDPs in a strict sense
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Where now?

If the MDP is known, solve the EV-problem, calculate cost for
the eigenvector
Dijkstra’s algorithm: visit all states, keep track of distance to
starting state
Assumptions were

MDP with known transition probabilities (deterministic for
Dijkstra)
(random) immediate cost/reward (lengths for Dijkstra)
global information is available
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Optimality

Bellman’s Principle of Optimality: An optimal policy has the
property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard
to the state resulting from the first decision. (1957)
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