
RL 4: Q-Learning: Examples and Theory

(Markovian decision processes I)

Michael Herrmann

University of Edinburgh, School of Informatics

24/01/2014

Last time: Q-Learning (Points to remember)

Brute force approach: For each policy, π : S → A, sample
returns, and choose the policy with the largest expected return
Or: Allow samples from one policy to influence the estimates
made for another

Qt+1 (st , at)=Qt (st , at)+η (r (st , at)+γVt (st+1)−Qt (st , at))
(C. J. C. H. Watkins, 1989)

Vt(s)=maxaQt(s, a), at =argmaxaQt(s, a), γ discount factor
greedy policy

Off-policy algorithm (learning rule works well with exploration)
The value of a state is the total discounted future reward
expected when choosing the action presently considered best
now and continue with the policy presently considered optimal.
V (st) = r (sk , a∗ (sk)) + γV (st+1) (ideally)
rmax/ (1− γ) ≥ Q (s, a) (except for initialisation effects)
Q-learning generates trees (or forests, for multiple goals) with
goal(s) as root(s)

24/01/2014 Michael Herrmann RL 4

Preliminary discussion of the relevant time scales

1 Behavioural time scale 1/ (1− γ) (discount factor)
2 Sampling in the estimation of the Q-function η (learning rate)
3 Exploration ε (e.g. for ε-greedy strategy)

1− γ � η � ε

Adaptation of time scales: Initially 1− γ ≈ η ≈ ε is possible, then
decrease both ε and η, but ε faster than η to reach the separation
of time scales asymptotically.

Practically, fix maximal number of trials M <∞ and set
η ∼ (1−m/M)α and ε ∼ (1−m/M)β with α < β, m = 1, . . . ,M.
Not theoretically justified.

γ may be moved a bit towards 1, i.e. explore first short time scales,
later longer ones (assuming there is some reward in both cases)

24/01/2014 Michael Herrmann RL 4

Examples

1 Define

states, actions, rewards, γ, η, ε, initialisation, steps, ...

2 Organise experiments

episodes
repetitions

3 Analysis

significance, robustness, generalisability
potential improvements [goto 1]

24/01/2014 Michael Herrmann RL 4

Example 0: MAB as a Special Case

Q-learning for the N-armed bandit

States: s ∈ {C} (just one state, namely the Casino)
Actions: a ∈ {1, . . . , N}
state transitions C → C , ∀a
Reward: r = ra with ra ∼ N

(
µa, σ

2
a
)

Initialisation: Q0 (a, s) = 5×maxa {µa + σa} (optimistic)

Qt+1 (st , at) = Qt (st , at)+η (r (st , at)+γVt (st+1)−Qt (st , at))

= Qt (at)+η (r (at)+γVt −Qt (at))

Q̃t+1 (at) = Q̃t (at)+η
(
r (at)−Q̃t (at)

)
at =argmaxaQt+1 (a) =argmaxaQ̃t+1 (a)

24/01/2014 Michael Herrmann RL 4

Example 1: A Simple Maze

States: s ∈ {4× 4 squares}
without obstacles
Actions: a ∈ {E , W , N, S}
Reward: r = 0 if s ≡ G (two of
the corners),
r = −1 for each step taken
discount factor: γ = 1 (no
discount)

G

G

Initialisation: Q (a, s)∼ N (0, 0.01)
Reset to random position after reaching the goal

24/01/2014 Michael Herrmann RL 4

Navigation in a grid world

−14

−18

−22

0

0 −20

−14

−14

−14

−22

−22

−22

−20

−20

−20

−18

−10 −3

0

−2

−2

−2

−2

−2

−3

−3

−1

−1

−2

−1

−3

average path length
for random exploration

minimal path length
using optimal policy

preferred actions
(may stay undecided)

1

2

3

4
1

2
3

4

-3

-2

-1

0

non-discounted
value function
over state
space

Adapted from
Mance E. Harmon:

Reinforcement Learning:
A Tutorial (1996)

24/01/2014 Michael Herrmann RL 4

Navigation in a grid world: Discussion

Random exploration (i.e. ε-greedy with ε = 1) provides (in
this example; in general it’s better to slowly decrease ε) the
information about optimal policy.
If Q (s, a) is randomly initialised (and ε is small) then the
agent may easily get stuck.
The values at the goals are due to a special treatment of these
states. The reward is immediate reward plus value of next
state:

if the agent is reset to a random position for the next episode
then the next state may have a very low value
if the agent stays at G then another step is taken which has a
cost of -1, but is this not counted.
Practically, we are not using Q (G , a), only V (G) which is
defined to be zero an used to update Q (s, a) of the previous
state that led the agent to the goal.
If we did update Q (G , a) we should (make sure that we)
obtain Q (G , a) = 0 for a towards the wall, and Q (G , a) = −2
for the a’s back to the maze.

24/01/2014 Michael Herrmann RL 4

Example 2: Another Maze

States: s ∈ {7× 7 squares} with
obstacles (see previous lecture)
Actions: a ∈ {E , W , N, S}
Reward: r = 1 if s ≡ G , r = 0
otherwise
Initialisation:
Q0 (a, s)∼ N (0, 0.01)

[Homework]

G S

24/01/2014 Michael Herrmann RL 4

Example 3: Car Positioning
(A simplified version of the Mountain Car problem)

States: s ∈ {40× 40 squares}
Actions: a ∈ {accelerate forward, accelerate backward}
Reward: r = 1 if stopping in a small region near the goal,
r = 0 otherwise
Initialisation: Q0 (a, s)∼ N (0, 0.01)
Discount factor: γ = 0.95
Exploration: initially ε = 0.25, decaying over 100,000,000 time
steps
Learning rate η = 0.1

24/01/2014 Michael Herrmann RL 4

Example 4: Cart positioning by Q-learning

������������������
������������������
������������������
�����������������������

�����
�����
�����

goal

Accelerate cart such that it stops at a given position in min. time
Only one level of acceleration, action is to choose the sign
Size of goal region determines minimal state space resolution
Problems: relevant part of state space, slow convergence

target position

fo
rw

a
rd

b
a
c
k
w

a
rd

z
e
ro

s
p
e
e
d

preferred actions

0

1

value function

24/01/2014 Michael Herrmann RL 4

Example 4: Discussion

Extremely long learning time
How many time step does is take until the agent reaches a
noew state?
Neighbouring states are doing largely the same
The boundary between the region is not very well resolved
even for a fine democratisation
Try (using information available during the learning process)

success stories: update not only previous time steps, but also
everything that lead to the final success
adaptive partitioning of the state space: In more homogeneous
regions use few states, whereas near critical boundaries more
state are needed (e.g. based on a weighted k-means algorithm)
use options: only update once new information becomes
available

24/01/2014 Michael Herrmann RL 4

Example 5: Inverted pendulum or “cart-pole”

24/01/2014 Michael Herrmann RL 4

Example 5: Cart-Pole Problem

States: 4D state space, few states per dimension
Actions: a ∈ {Accelerate,Brake}
Reward: r = 1 for upright pendulum, r = −1 upon failure,
r = 0 otherwise,
Initialisation: Q (a, s)∼ N (0, 0.01)
Discount factor: γ = 0.995
Exploration: initially ε = 0.1, decaying over 100,000,000 time
steps
Learning rate η = 0.1

[more later]

24/01/2014 Michael Herrmann RL 4

Examples from literature

Elevator control (Barto and
Crites, 1996)
Learning in games:

Backgammon (Tesauro,
1994)
Go (Silver et al. 2007)

Learning in robotics

Controlling quadrupeds (Kohl and Stone, 2004)
Humanoids (Peters et al. 2003)
Helicopters (Abbeel et al. 2007)
Automotive control

Finance:

Optimal pricing (Tsitsiklis and Van Roy, 1999; Yu and
Bertsekas, 2007; Li et al., 2009)

24/01/2014 Michael Herrmann RL 4

More examples from the literature

More CS applications

Packet routing (Boyan and Littman, 1994)
Channel allocation (Singh and Bertsekas, 1997)
Dialogue strategy selection (Walker, 2011)

Operations research

targeted marketing (Abe et al. 2004)
maintenance problems (Gosavi, 2004)
job scheduling (Zhang and Dietterich, 1995)
pricing (Rusmevichientong et al. 2006
vehicle routing (Proper and Tadepalli, 2006)
inventory control (Chang et al., 2007)
fleet management (Simão et al., 2009)

Modelling biological mechanisms

24/01/2014 Michael Herrmann RL 4

Summary on examples

Advantages: Sampling, bootstrapping, on-line learning, little
domain knowledge required, theory based
Disadvantages:

Solutions usually non-generalisable
Finding a good solution is slow, does not scale well

Problem representation is critical: States, actions, rewards,
parameters, ...
Work on real-world examples has led to better algorithms:

Disambiguate stochastic state information
Reduce complexity of state/action spaces
Increase efficiency

24/01/2014 Michael Herrmann RL 4

Syllabus

Reinforcement Learning
Multi-Armed Bandits
Q-learning
Markov chains
Markov Decision Processes
Dynamic programming
Monte-Carlo methods
Back to RL
POMDPs
Continuous problems

24/01/2014 Michael Herrmann RL 4

Stochastic Processes

A stochastic process is an indexed collection of random
variables {Xt}

e.g. time series of weekly demands for a product

Discrete case: At a particular time t, labelled by integers,
system is found in exactly one of a finite number of mutually
exclusive and exhaustive categories or states, labelled by
integers, too
Process could be embedded, i.e. time points correspond to
occurrence of specific events (or time may be equi-spaced)
Random variables may depend on others, e.g.,

Xt+1 =

{
max {(3− Dt+1) , 0} if Xt < 0
max {(Xt − Dt+1) , 0} if Xt ≥ 0

or Xt+1 =
∑K

k=0 αkXt−k + ξt with ξt ∼ N
(
µ, σ2)

24/01/2014 Michael Herrmann RL 4

Markov Chains

The stochastic process is said to have a Markovian property if

P(Xt+1= j |Xt = i ,Xt−1=kt−1, . . . ,X1=k1,X0=k0)=P(Xt+1= j |Xt = i)

for t = 0, 1, . . . and every sequence i , j , k0, . . . , kt−1

Markovian probability means that the conditional probability of a
future event given any past events and current state, is independent
of past states and depends only on present

The conditional probabilities are transition probabilities,

P (Xt+1 = j |Xt = i)

These are stationary if time invariant. The we can write

pij = P (Xt+1 = j |Xt = i) = P (X1 = j |X0 = i)

24/01/2014 Michael Herrmann RL 4

Markov Chains

A stochastic process is a finite-state Markov chain if it has

a finite number of states s ∈ S
the Markovian property
stationary transition probabilities pij for all i , j
a set of initial probabilities π0

i = P {X0 = i} for all i

n-step transition probabilities (looking forward in time)

p(n)ij = P (Xt+n = j |Xt = i) = P (Xn = j |X0 = i)

One can write a transition matrix

P(n) =

 p(n)00 · · · p(n)0M
...

. . .
...

p(n)M0 · · · p(n)MM


Andrey Markov

24/01/2014 Michael Herrmann RL 4

Markov Chains

2-step transition probabilities can be obtained from 1-step
transition probabilities

p(2)ij =
M∑

k=1

pikpkj , ∀i , j

n-step transition probabilities can be obtained from 1-step
transition probabilities recursively (Chapman-Kolmogorov)

p(n)ij =
M∑

k=1

p(v)ik p(n−v)
kj , ∀i , j , n; 0 ≤ v ≤ n

We can get this via the matrix too

P(n) = P · · ·P︸ ︷︷ ︸
n times

= Pn = PPn−1 = Pn−1P

24/01/2014 Michael Herrmann RL 4

Markov Chains: First Passage Times

Number of transitions to go from i to j for the first time
First Passage Times are random variables ⇒ mean FPT etc.
If i = j , this is the recurrence time

n-step recursive relationship for first passage probability

f (1)ij = p(1)ij = pij

f (2)ij = p(2)ij − f (1)ij pjj

...
f (n)ij = p(n)ij − f (1)ij p(n−1)

jj − f (2)ij p(n−2)
jj − · · · − f (n−1)

ij pjj

For fixed i and j , these f (n)ij are non-negative numbers so that∑∞
n=1 f

(n)
ij ≤ 1

If
∑∞

n=1 f
(n)
ii = 1 that state is a recurrent state,

It is absorbing if f (1)ii = 1
24/01/2014 Michael Herrmann RL 4

Markov Chains: Classification of States

State j is accessible from i if p(n)ij > 0 (for some n)

What is the accessibility of states for the inventory example?
What does this mean in RL?

If state j is accessible from i and vice versa, the two states are
said to communicate

What is the status of states in inventory example?

As a result of communication, one may partition the general
Markov chain into states in disjoint classes

MC is irreducible if there is only one class

24/01/2014 Michael Herrmann RL 4

Markov Chains: Classification of States

Many Markov chains in practise consist entirely of states that
communicate with each other; hence are irreducible with only
positive recurrent states
Positive recurrence: State is recurrent and has a finite
expected return time.
If the MC can only visit the state at integer multiples of t, we
call it periodic
Positive recurrent states that are aperiodic are called ergodic
states

What can you say about how ergodic states will evolve?

24/01/2014 Michael Herrmann RL 4

Markov Chains: Long-Run Properties

Inventory example: Interestingly, probability of being in state j
(after, e.g., 8 weeks) appears independent of initial level π0 of
inventory.

For an irreducible ergodic Markov chain, one has limiting probability

lim
n→∞

p(n)ij = π∗j

i.e. the limit for each element pij does not depend on i .

π∗j =
M∑
i=1

π∗i pij ∀j = 1, . . . ,M

π∗ = (π∗1, . . . , π
∗
M) is an eigenvector of the matrix P = (pij).

Perron-Frobenius theorem: Matrices with positive entries have a
unique largest eigenvalue. For a probability matrix this EV is 1.

Reciprocal of π∗j gives the recurrence time mjj
24/01/2014 Michael Herrmann RL 4

Markov Chains: Expected Average Cost

Sometimes aperiodic chain is a strong assumption. If we relax it,
the limiting probability needs a slightly different definition:

lim
n→∞

1
n

n∑
k=1

p(n)ij = π∗j

Suppose you incur a (time-independent) cost C (Xt), using above
you can derive the long-run expected average over unit time as

lim
n→∞

{
E

[
1
n

n∑
k=1

C (xt)

]}
=

M∑
j=1

Cjπ
∗
j

Can be more elaborate in general, depending on cost function

24/01/2014 Michael Herrmann RL 4

Conclusion and Outlook

Markov Chains will be used as model of the state dynamics in
a RL problem
Not all state dynamices are Markovian
A fixed policy transforms a Markov chain in a Markov chain
with a (generally) different transition matrix
On-policy reinforcement learning algorithms are often based
MDPs in a strict sense (Q-learning is off-policy and therefore
not a very good example)

Many slides are adapted from web resources associated with Sutton and Barto’s Reinforcement Learning
book . . . before being used by Dr. Subramanian Ramamoorthy in this course in the last three years.

24/01/2014 Michael Herrmann RL 4

