
RL 3: Reinforcement Learning
Q-Learning

Michael Herrmann

University of Edinburgh, School of Informatics

21/01/2014

Last time: Multi-Armed Bandits (Points to remember)

MAB applications do exist (e.g. experimental design)
Exploration-exploitation dilemma: Both the reward and information
about the reward are important. Although dilemma in general not
unambiguously solvable, for MAB reasonable solutions exist.
Estimate parameters of the action-specific reward distributions
Qk = Qk−1 + 1

k (rk − Qk−1) gives an exact mean over rk for Q0 = 0
Qk+1 = (1− α) Qk +αrk+1 gives an exponentially weighted average
(for non-stationary problems; initialisation usually does not matter)

regret: ρ = Tµ∗ −
∑T

t=1 r̄t where µ∗ = maxk µk

ε-greedy policy has an asymptotic regret (not if ε decays sufficiently
slowly)
Optimistic initialisation of Q often provides a good exploration (not
if reality is even better or if you are unlucky)

Boltzmann action selection eQt (a)/τ∑N
b=1 eQt(b)/τ

with temperature τ is an

reasonable exploration scheme, but ε-greedy is often not bad, too.

For more details see e.g. ICML 2011 Tutorial Introduction to Bandits: Algorithms and Theory,
Jean-Yves Audibert, Remi Munos https://sites.google.com/site/banditstutorial/

21/01/2014 Michael Herrmann RL 3

The Gittins Index (still for MABs)

Each arm delivers reward with a probability which may change
through time but only when arm is pulled
Not only adapt estimates of the reward by moving averages,
also maximise discounted rewards: exp. discount factor γ < 1
γ relates to 1− α (exp. average) and time scale

τ ∼ 1
1− γ

=
1
α

All you need to do is compute an “index” for each arm and
play the one with the highest index:

νi = sup
T>0

〈
T∑

t=0

γtR i (t)

〉

Often the index is defined with a normalising denominator.

21/01/2014 Michael Herrmann RL 3

The Gittins Index Theorem

Gittins index theorem: The optimal policy is to play at each
epoch a bandit of greatest Gittins index.
Gittins index for any given arm is independent on other arms

Adding/removing arms does not really change computation
Once you have a good arm, keep playing it
Arms are not updated unless used (Exploration?)

See e.g.:

R. Weber: On the Gittins index for multiarmed bandits. Annals of Appl. Prob. (1992) 1024-1033.

21/01/2014 Michael Herrmann RL 3

Beyond the MAB Model: Towards RL

Previously, we were in a single casino and the only decision is
to pull from a set of N arms

not more than a single state!

Now,

What if there is more than one state?
So, in this state space, what is the effect of the distribution of
payout changing based on how you pull arms?
What happens if you only obtain a net reward corresponding
to a long sequence of arm pulls (at the end)?

21/01/2014 Michael Herrmann RL 3

Example

A robot learns to “stop-and-back-up-and-turn” (a1) in near an
obstacle (s1) and to “go” (a2) away from an obstacle (s2) from
r (s2) = 1 and r (s1) = 0

How does the robot find out
that a2 is actually better in s1
where both actions lead to
r = 0?
How can the robot be kept
from preferring a1 in state s2?
What can go wrong?

21/01/2014 Michael Herrmann RL 3

Brute force

1 For each possible policy, sample returns while following it
2 Choose the policy with the largest expected return

If a trial takes T time steps and

Policy assigns to each time t ≤ T an action a ∈ A by

π : T 7→ A,

where T is the set of decision times, i.e. |T | = T .

In principle there are thus |A|T policies.
(assuming the cardinalities |A| and T are finite)

For the bandit problem with T = 1 this worked well.

21/01/2014 Michael Herrmann RL 3

Improving beyond brute force

Consider a maze of 7× 7 fields, i.e.
|T | ≤ 49. There are 4 directions.
So there are at most 449 policies.
Many can be excluded when using the
immediate punishment given at bumping
into a wall.
Employing in addition an
inhibition-of-return principle usually even
less actions are admissible.
Many policies differ only in the part after
the goal or are equivalent (e.g. “first up
then left” may equal “first left then up”
if there are no obstacles nearby).

G S

21/01/2014 Michael Herrmann RL 3

Improving beyond brute force

Branch and bound
Define policy based on states
s ∈ S

Some states are inaccessible
(try not to represent what is
never experienced)
Avoid reaching at state
repeatedly in one run (e.g. by
intrinsic reward/punishment)
But: states need to
incorporate all the relevant
information∗

G S

An efficient solution.

Introduce a geometry on the set of states
Allow samples generated from one policy to influence the
estimates made for another.

∗E.g. in the pendulum swing-up task states typically include position and velocity.

21/01/2014 Michael Herrmann RL 3

Preliminary considerations

If much information about the task is available, it should be
used
Configurations of different actions may be equivalent a1 = E
and a3 = N is as good as a1 = S and a3 = S (and a2 = W)
or even misleading: a1 = E and a2 = W is better than a1 = S
and a2 = S , although the globally best policy has a1 = S (and
a2 = W , a3 = N)
Earlier decisions may influence later decisions (consider
agent-centered code: L, R , S , B)
Be that as it may, do we have a chance to deal with stochastic
problems of this type?
There are a number of approach, we choose one (and consider
later others)

21/01/2014 Michael Herrmann RL 3

Off-policy learning: Q-Learning
Consider a person moving randomly through Edinburgh in search
for a nice place to have dinner. She eventually finds a place and
enjoys a great dinner.

Later the person doesn’t remember the location of the place but
she knows that it was near a statue of a dog.

Later the agents stumbles into the statue of the dog. She does not
remember how she got there, but she remembers that it was near
some elephant plate in shopping window.

Later she finds the elephant image again after having been at a
library.

Later she bumps into the dog again, and remember that she was
that time in front of a museum before.

Much later all sites of Edinburgh are connected by some
“nearness” relation. And the agent knows that different sites are in
different “nearness” steps from that restaurant.
21/01/2014 Michael Herrmann RL 3

Off-policy learning: Q-Learning

Assume that the cardinalities |A| and |S| are finite, and T ⊆ N0.

By definition, states contain the relevant information about the
system, i.e. the value of an action can depend only on the state:

Q (s, a)

Intuitively, the Q function expresses the expected reward when
being in state s and applying a.

However, often there is no reward (r = 0). Then, differently from
MAB, it is still an option to move to a “better” state.

The value V (s1) of a state s1 is defined as the value of the best
action that can be applied in this state

V (s1) = max
a∈A

(Q (s1, a))

We have to solve a MAB for each state!
21/01/2014 Michael Herrmann RL 3

Off-policy learning: Q-Learning

Taken together, if s1 is reached from s due to a, then (preliminarily)

Q (s, a) = r (s, a) + V (s1)

Immediate reward

(if there is any)

plus

Value of the next state

(assuming best possible action)

s1 reached from s by action a

21/01/2014 Michael Herrmann RL 3

How can this work?
An artificial example

It could happen that s0 = s1 (taking a0). If also r (s0, a0) = 0, then

Q (s0, a0) = V (s0)

If in addition
a0 = argmax

a∈A
(Q (s0, a))

then the value of Q for will depend on the initialisation.

(Recall what we have said about exploration and initialisation in MABs)

General reachability
Possibly via reinitialisation (upon reaching goal/timeout/loss)

21/01/2014 Michael Herrmann RL 3

Iterative learning rule

ρt = r (st−1, at−1) + V (st)

Combined reward = immediate reward + value of new state

Qt (st−1, at−1) = Qt−1 (st−1, at−1) + η (ρt −Qt−1 (st−1, at−1))

When observing a state transition from st−1 to st under action
at−1, then use a sliding average to estimate the combined reward.

Notes:

Not all actions a ∈ A need to be admissible in all states s ∈ S.
For Qt the parameter t refers to update steps, for st and at is
refers to the physical time of the system. Often it is
reasonable to keep the two parameters in sync.
Temporally at−1 is in between st−1 and st , we denote it by
t − 1 by convention

21/01/2014 Michael Herrmann RL 3

How could this work?
More artificial examples

Assume again that s0 = s1, but now with a large r (s0, a0), then

Qt (s0, a0) = r (s0, a0) + V (s0)

Qt (s0, a0) = Qt−1 (s0, a0) + η (r (s0, a0) + V (s0)−Qt−1 (s0, a0))

If in addition
a0 = argmax

a∈A
(Q (s0, a))

and
V (s0) = max

a∈A
(Q (s0, a))

then Q (s0, a0) will grow without bounds.

If, in a different setting, r (at , st) = 0 for many or few steps before
finally r > 0 is achieved, Q would be the same.

=⇒ Value function should express discounted reward

21/01/2014 Michael Herrmann RL 3

Value functions

The value of a state is the total future (discounted) reward that is
expected when choosing the presently known best action for this
state continue with the policy that is currently considered optimal.

V (st) = r (st , a∗ (st)) + r (st+1, a∗ (st+1)) + r (st+2, a∗ (st+2)) + · · ·

=
∞∑

k=t

r (sk , a∗ (sk))

Discounted version γ ≤ 1:

V (st) = r (st , a∗ (st)) + γr (st+1, a∗ (st+1)) + γ2r (st+2, a∗ (st+2)) + · · ·

=
∞∑

k=t

γk−tr (sk , a∗ (sk))

21/01/2014 Michael Herrmann RL 3

Discounted update

V (st) =
∞∑

k=t

γk−tr (sk , a∗ (sk))

= r (sk , a∗ (sk)) +
∞∑

k=t+1

γk−tr (sk , a∗ (sk))

= r (sk , a∗ (sk)) + γ

∞∑
k=t+1

γk−(t+1)r (sk , a∗ (sk))

r (sk , a∗ (sk)) + γV (st+1)

The Q-function is updated analogously, but for an arbitrary action

Qt+1 (st , at) = Qt (st , at) + η (r (st , at) + γV (st+1)−Qt (st , at))

Q-learning was first introduced by C. J. C. H. Watkins (1989)

21/01/2014 Michael Herrmann RL 3

How does this work?
A final artificial example

Assume again that s0 = s1, but now with r (s0, a0) = rmax, then

∆Qt (s0, a0) = η (r (s0, a0) + γV (s0)−Qt (s0, a0))

Choose always
a0 = argmax

a∈A
(Q (s0, a))

i.e.
V (s0) = max

a∈A
(Q (s0, a)) = Q (s0, a0)

stationarity at

0 = η (rmax + γV (s0)−Qt (s0, a0))

rmax
1− γ

= Qt (s0, a0)

finite for γ < 1 (remember that γ is typically close to 1)

If rmax is known, this can be useful for optimistic initialisation.
21/01/2014 Michael Herrmann RL 3

Toy Example: 1D maze
Problem set up

Track S: |S| = N spaces numbered 1, . . . ,N
Actions: A = {left, right} ≡ {−1,+1}

Reward: r (s, a) = r (s) =

{
1 if s = 1 (goal)
0 otherwise

Initialisation Q (s, a) = 0 ∀s, a (not really optimistic)
Exploration: ε-greedy with (initially) ε = 1, i.e. random moves
later ε→ 0 and at = argmaxa Q (st , a) for non-random moves
Starting at random point s1 = k
Restart after reaching goal or if t = |T | with e.g. |T | = N2 (?)

21/01/2014 Michael Herrmann RL 3

Toy Example: 1D maze
Solution (for η = 1)

If s1 = 1 make a move (go right) and update Q (1, right) = 1,
restart
If s1 > 1 then perform a random move leading to s2

if s2 = 1 then update Q (2, left) = 0 + γV (1), restart
if s2 > 1 then Q (s2, a) remains 0

After ε decayed, we arrive at the value function

for N > k > 1: Q (k , left) = γk−1, Q (k , right) = γk−3

for the ends of the track: Q (1, right) = 1, Q (1, left) = 0,
Q (N, left) = γN−1, Q (N, right) = 0

Homework: Write a simulation for this example

21/01/2014 Michael Herrmann RL 3

Discussion

Off-policy algorithm: Learning the value of state-action pairs
independently of their position in a policy, i.e. learning
generalises across policies

Policies are not factorisable in general
If the algorithm contains exploration it is not performing
optimally and therefore is does not know the value of the
currently optimal policy

Look-up table representation of the Q-function
(Q : S ×A → R) is not very efficient. We will later use
function approximation
Other exploration schemes are clearly possible
Convergence (Watkins and Dayan, 1992): We need a solid
theoretical basis for this
Complexity: [will take time]

21/01/2014 Michael Herrmann RL 3

Preliminary discussion of the relevant time scales

1 Behavioural time scale 1/ (1− γ) (discount factor)
2 Sampling in the estimation of the Q-function η (learning rate)
3 Exploration ε (e.g. for ε-greedy strategy)

1− γ � η � ε

Adaptation of time scales: Initially 1− γ ≈ η ≈ ε is possible, then
decrease ε faster than η to reach the separation of time scales
asymptotically.

Practically, choose number of trials M <∞ and set η ∼ 1−m/M
and ε ∼ (1−m/M)2, m = 1, . . . ,M. Not theoretically justified.

γ may be moved a bit towards 1, i.e. explore first short time scales,
then longer ones (assuming there is some reward in both cases)

21/01/2014 Michael Herrmann RL 3

Examples and Applications

Higher dimensional mazes, grid worlds, search trees etc.
Games, decision making, modelling the control of behaviour
Cart-pole, pendulum swing up, multiple pendula, mountain-car
Chaos control, robot control
Industrial control, production control, automotive control,
autonomous vehicles control, logistics, telecommunication
networks, sensor networks, ambient intelligence, robotics,
finance (s. Real World Applications of Reinforcement Learning
at International Joint Conference on Neural Networks 2012)

Outlook to next lectures: Will establish a theoretical basis including

Markov decision problems
Dynamic programming
Monte Carlo methods

21/01/2014 Michael Herrmann RL 3

