Reinforcement Learning
Lecture 8

Gillian Hayes

1st February 2007

® School of

informatics

Gillian Hayes RL Lecture 8 1st February 2007

® School of _ o
- informatics

Algorithms for Solving RL: Monte Carlo Methods

e What are they?

e Monte Carlo Policy Evaluation
e First-visit policy evaluation

e Estimating Q-values

e On-policy methods

e Off-policy methods

Gillian Hayes RL Lecture 8 1st February 2007

® School of _ o
s iInformatics

Monte Carlo Methods

e Learn value functions
e Discover optimal policies

e Don't require environmental knowledge: P, RS,
cf. Dynamic Programming

e Experience : sample sequences of states, actions, rewards s, a, r

. real experience, simulated experience

e Attains optimal behaviour

Gillian Hayes RL Lecture 8 1st February 2007

® School of _ o
= informatics

How Does Monte Carlo Do This?

e Divide experience into episodes
— all episodes must terminate
e.g. noughts-and-crosses, card games

e Keep estimates of value functions, policies

e Change estimates/policies at end of each episode
= Keep track of s1,a1,7r1,S2,a9,79,...8S7_1,a7—-1,"T—1, ST

sT = terminating state

e Incremental episode-by-episode
NOT step-by-step cf. DP

e Average complete returns — NOT partial returns

Gillian Hayes RL Lecture 8 1st February 2007

® School of _ o
= informatics

Returns

e Return at time t: Ry =711 + 120+ ...77—1 + 77 for each episode
rT 1S a terminating state

e Average the returns over many episodes starting from some state s.

This gives the value function V™ (s) for that state for policy 7 since the state
value V7™ (s) is the expected cumulative future discounted reward starting in s

and following policy 7.

Gillian Hayes RL Lecture 8 1st February 2007

® School of _ o
= iInformatics

Monte Carlo Learning of V7

MC methods estimate from experience: generate many “plays’ from s, observe
total reward on each play, average over many plays

1. Initialise

e 71 = arbitrary policy to be evaluated
e |V = arbitrary value function
e Returns(s) an empty list, one for each state s

2. Repeat till values converge

e Generate an episode using
e For each state appearing in the episode

— R = return following first occurrence of s
— Append R to Returns(s)
— V(s) = average Returns(s)

Gillian Hayes RL Lecture 8 1st February 2007

® School of _ o
= informatics

Backup Diagram for MC

() State s - estimate V(s)

Policy TI(s,a)
@® Actiona
reward r(t+1)
O state s’
® One Episode — full episode needed before back-up.
cf DP which backs up after one move
¢ Monte Carlo does not bootstrap but

Monte Carlo does sample

% Terminal state St

Gillian Hayes RL Lecture 8 1st February 2007

® School of _ o
= informatics

Blackjack

Sum on cards to be as close to 21 as possible

PLAYER DEALER
o 060
5 o 00 PR 8
o 00 o 6o
10 QUEEN ?
16
ACE=10R11

Player:

e HIT = take another card
e STICK — Dealer’s turn
or GOES BUST > 21 — loses

Gillian Hayes RL Lecture 8 1st February 2007

® School of _ o
= iInformatics

e Dealer’s fixed strategy
STICK if > 17
HIT if <17

Outcome: if > 21 = LOSE
CLOSEST TO 21 = WIN
EQUALLY CLOSE = DRAW

Gillian Hayes RL Lecture 8

1st February 2007

® School of _ o
s informatics

Blackjack: MC Episodic Task

* Reward +1, -1, 0 for win, lose, draw
* Reward within game = 0
* No discount = Return = +1, -1, 0

* Actions: HIT, STICK

* States (sum on own cards, dealer’s face-up card, usable ace): 200
If sum on own cards < 11 no decision,
always HIT

* Example policy 7: If own sum < 20 HIT
Else STICK

Gillian Hayes RL Lecture 8 1st February 2007

L School of _ e
~ informatics

e Play many games
e Average returns (first-visit MC) following each state

e — T[rue state-value functions

* Easier than DP = That needs P¢,, R?
* Easier to generate episodes than calculate probabilities

Gillian Hayes RL Lecture 8 1st February 2007

® School of _ o
-~ informatics

Policy Iteration (Reminder)

— Policy evaluation: Estimate V™ or Q™ for fixed policy «

— Policy improvement: Get a policy better than 7

lterate until optimal policy/value function is reached

So we can do Monte Carlo as the Policy Evaluation step of Policy lteration

because it computes the value function for a given policy. (There are other
algorithms we can use.)

Gillian Hayes RL Lecture 8 1st February 2007

® School of _ o
- informatics

First-visit MC vs. Every-visit MC

In each episode observe return following first visit to state s

Number of first visits to s must — oo

Converges to V7™ (s)

cf. Every-visit MC

Calculate V' as the average over return following every visit to state s in a set of
episodes

Gillian Hayes RL Lecture 8 1st February 2007

® School of _ o
= informatics

Good Properties of MC

Estimates of V for each state are independent
— no bootstrapping

Compute time to calculate changes (i.e. V of each state) is independent of
number of states

If values of only a few states needed, generate episodes from these states = can
ignore other states

Can learn from actual/simulated experience
! a a
Don't need P2, R?,,

Gillian Hayes RL Lecture 8 1st February 2007

® School of _ o
~ informatics

Estimating Q-Values
Q7 (s,a) — similarly to V

Update by averaging returns following first visit to that state-action pair

Problem

If 7 deterministic, some/many (s, a) never visited
MUST EXPLORE!

So...
* Exploring starts: start every episode at a different (s, a) pair

* Or always use e-greedy or e-soft policies
— stochastic, where 7(s,a) > 0

Gillian Hayes RL Lecture 8 1st February 2007

® School of _ o
= iInformatics

Optimal Policies — Control Problem
Policy Iteration on ()

0 1
o —pr QF —pr m1 —prg QF —pr m2... —pr T —pp Q°
e Policy Improvement: Make 7 greedy w.r.t. current @)
e Policy Evaluation: As before, with oo episodes

Or episode-by-episode iteration. After an episode:

e policy evaluation (back-up)
e improve policy at states in episode

e eventually converges to optimal values and policy

Gillian Hayes RL Lecture 8 1st February 2007

L School of _ e
~ informatics

Can use exploring starts: MCES — Monte Carlo Exploring Starts to ensure
coverage of state/action space

Algorithm: see e.g. S+B Fig. 5.4

Gillian Hayes RL Lecture 8 1st February 2007

® School of _ o
~= informatics

Monte Carlo: Estimating Q)™ (s, a)

e If m deterministic, some (s,a) not visited = can't improve their () estimates

MUST MAINTAIN EXPLORATION!
e Use exploring starts — optimal policy

e Use an e-soft policy
ON-POLICY CONTROL — e-greedy policy
OFF-POLICY CONTROL — optimal policy

Gillian Hayes RL Lecture 8 1st February 2007

® School of _ o
= informatics

On-Policy Control

Evaluate and improve the policy used to generate behaviour

Use a soft policy:
w(s,a) >0 Vs,Va GENERAL SOFT POLICY DEFINITION

w(s,a) = ry ifanot greedy eGREEDY
:1—e—|—ﬁ if a greedy
m(s,a) > Ty Vs, Va e-SOFT

POLICY ITERATION
FEvaluation: as before Improvement: move towards e-greedy policy (not greedy)
Avoids need for exploring starts

e-greedy is “closer” to greedy than other e-soft policies

Gillian Hayes RL Lecture 8 1st February 2007

® School of _ o
s iInformatics

Off-Policy Control

e Behaviour policy 7’ generates moves

e But in off-policy control we learn an Estimation policy . How?
We need to:

e compute the weighted average of returns from behaviour policy
e the weighting factors are the probability of them being in estimation policy,

e i.e. weight each return by relative probability of being generated by 7 and 7’

In detall...

Gillian Hayes RL Lecture 8 1st February 2007

® School of _ o
= informatics

Can You Learn m While Following 7?7

We need: Estimation policy 7(s,a) > 0 = Behaviour policy 7’(s,a) > 0
So if we want to estimate it, it MUST appear in behaviour policy
On the ith first visit to state s, let:

pi(s) = probability of getting subsequent sequence of states and actions from 7
(ESTIMATION)

p;(s) = probability of getting subsequent sequence of states and actions from 7’
(BEHAVIOUR)

Ti(s)—l

pz(st) — H W(Sk7&k)P§k]€Sk+1
k=t

Gillian Hayes RL Lecture 8 1st February 2007

L School of _ e
= informatics

Ti(s)—l

pi(s) = 1] #(swan)Pik,
k=t

R!(s) = return observed

Then after ng returns experienced from state s (so episodes in which s occurs):

Zns pi(S)R;(S>

1=1 p’.(S)
VT(s) = :
ns p;(s)
Zi:1 p;(s)
Ti(s)—l
pl(st) — H W(Sk, &k)PskkSk+1
k=t

Gillian Hayes RL Lecture 8 1st February 2007

L School of _ e
= informatics

T;(s)—1
pi(s) = [*(smar)Plx,
k=t
Tis—l
pils) ﬁ (51, ar)
p;(St) - ' (Sk, ak)

Doesn’t depend on environment

Gillian Hayes RL Lecture 8 1st February 2007

® School of _ o
s informatics

Off-Policy MC Algorithm

How to use this formula to get (Q-values?

e Use Behaviour Policy 7’ to generate moves
— must be soft so that all (s,a) continue to be explored

e Evaluate and improve Estimation Policy
— converges to optimal policy

So...

1. BP 7’ generates episode

2. EP 7 is deterministic and gives the greedy actions w.r.t. the current estimate

of Q7

Gillian Hayes RL Lecture 8 1st February 2007

® School of
=2 informatics

3. Start at end of episode, work backwards

till BP and EP give divergent actions, e.g. back to time ¢

4. For this chain of states and actions compute

T;(s)
H sk,a,k
et Skaak

I.e. we are able to find out about state s;

Gillian Hayes RL Lecture 8 1st February 2007

L School of _ e
= informatics

7 is deterministic so w(sk, ax) etc. =1

So
T’é S —1
pz‘(St) _) 1
pi(st) P ' (Sk, k)
5.
S HR
Q(s,a) = =

— D;
=7

averaged over no. times this (s,a) has been visited, say N

Gillian Hayes RL Lecture 8

1st February 2007

L School of _ e
= informatics

R’ = return for the chain of states/actions (see 3) following (s, a) (it’s different
for each of the N visits)

6. Do for each (s,a) in chain (see 3)

7. Improve 7 (estimation policy) to be greedy w.r.t. Q:
m(s) = argmax, Q(s, a)

(Still deterministic)

Takes a long time because we can only use the information from the end of the
episode in each iteration.

Gillian Hayes RL Lecture 8 1st February 2007

® School of _ o
= informatics

Summing Up
e MC methods learn V' and () from experience — sample episodes.
e Don’'t need to know dynamics of environment.
e Can learn from simulated experience.
e Can focus them on those parts of the state space we're interested in.

e May be less harmed by violations of Markov property, because they don't
bootstrap.

e Need to maintain sufficient exploration — exploring starts or on-policy or
off-policy methods.

Gillian Hayes RL Lecture 8 1st February 2007

