
Reinforcement Learning

Lectures 7

Gillian Hayes

29th January 2007

Gillian Hayes RL Lecture 7 29th January 2007

1

Algorithms for Solving RL: Dynamic Programming

• Policy Evaluation

• Iterative Policy Evaluation

• Policy Improvement

• Policy Evaluation + Policy Improvement = Policy Iteration

• Value Iteration

• Asynchronous Dynamic Programming

• Generalised Policy Iteration

Gillian Hayes RL Lecture 7 29th January 2007

2

Dynamic Programming
Needs perfect model P a

ss′
and Ra

ss′
.

We want to compute V ∗, Q∗, the optimal value and action-value functions

POLICY EVALUATION

Suppose we have some policy π which tells us what action a to choose in state
s. Find the value function V π(s) of this policy, i.e. eVALUate this policy.

Bellman Equation for V π(s):

V π(s) = Eπ{rt+1 + γV π(st+1) | st = s}

=
∑

a

π(s, a,)
∑

s′

P a

ss′
[Ra

ss′
+ γV π(s′)]

Soluble, but BIG – | S | equations in | S | unknowns. So we need to iterate....

Gillian Hayes RL Lecture 7 29th January 2007

3

Iterative Policy Evaluation 1
We apply a “sweep”, i.e. a backup operation to each state to compute the
value at that state. Each sweep (→) updates our current estimate of the value
function.

V0 → V1 → . . . Vk → Vk+1 . . . → V π

Update the value at state s thus:

Vk+1(s) =
∑

a

π(s, a,)
∑

s′

P a

ss′
[Ra

ss′
+ γVk(s

′)]

In other words, we’re using the Bellman equation as an iterative update equation

Update the V’s for all states iteratively. This is called a full policy evaluation

backup. After many sweeps we’ll converge to V π(s)

Gillian Hayes RL Lecture 7 29th January 2007

4

Iterative Policy Evaluation 2
1. Start with arbitrary V values

2. Iterate/update

⇒ get V for that policy

V π is a fixed point – it solves the Bellman equation

So: GIVEN π

WE NOW HAVE V π

Is it possible to improve policy π?

Yes, we can do policy improvement

Gillian Hayes RL Lecture 7 29th January 2007

5

Policy Improvement 1
We have V π for our policy π. Can we choose a better action than that stipulated
by π? In other words, an a 6= π(s).

The value of choosing action a in state s is the Q-value:

Qπ(s, a) = Eπ{rt+1 + γV π(st+1) | st = s, at = a}

=
∑

s′

P a

ss′
[Ra

ss′
+ γV π(s′)]

If Qπ(s, a) is greater than our current estimate V π(s) then we should choose a.

Do this for each state: policy improvement - because we’re changing to a policy
that gets us more return.

Gillian Hayes RL Lecture 7 29th January 2007

6

Policy Improvement 2
Improve the policy at each state. We get a new policy π′ that’s greedy wrt V π.

π′(s) = arg max
a

Qπ(s, a)

= arg max
a

∑

s′

P a

ss′
[Ra

ss′
+ γV π(s′)]

In this case the new policy is better than the old: V π
′

(s) > V π(s)

“Greedification”

If V π
′

(s) = V π(s), then

Gillian Hayes RL Lecture 7 29th January 2007

7

V π
′

(s) = maxa

∑
s′

P a

ss′
[Ra

ss′
+ γV π(s′)]

This is the Bellman Optimality Equation, and the value function and policies are
optimal:

V π = V ∗ and π = π′ = π∗

So...

Gillian Hayes RL Lecture 7 29th January 2007

8

Alternate Policy Evaluation and Policy
Improvement

Evaluate – Improve – Evaluate – Improve – Evaluate . . .

π0 →PE V π
0

→PI π1 →PE V π
1

→PI π2 →PI π∗ →PE V ∗

• Start with a policy

• EVALUate to give V , the value function

• Improve policy

• EVALUate to get new V for improved policy

• Improve policy

Gillian Hayes RL Lecture 7 29th January 2007

9

• etc.

• Get optimal policy

• Get optimal value function

This process is called Policy Iteration

Gillian Hayes RL Lecture 7 29th January 2007

10

Policy Iteration

1. Initialise

• π = arbitrary deterministic policy
• V = arbitrary value function
• θ = small positive number

2. Policy Evaluation

• For each state
• New V =

∑
s′

P a

ss′
[Ra

ss′
+ γV (s′)] where a = π(s)

• Repeat until no V changes by more than θ

3. Policy Improvement

• For each state

Gillian Hayes RL Lecture 7 29th January 2007

11

• Get b = π(s)
• New π = arg maxa

∑
s′

P a

ss′
[Ra

ss′
+ γV (s′)]

• If policy changed, i.e. new π(s) 6= b, goto 2

4. Stop

Gillian Hayes RL Lecture 7 29th January 2007

12

Issues, Improvements

In policy evaluation new values Vk+1 are calculated in terms of Vk, so need two

arrays.

Could update “in place”, overwriting one array of V s as soon as new value is
calculated. So some updates use already updated Vk values – uses new data as
it becomes available.

In-place converges faster than two-array version

Jargon “Sweep” through state space – updating values as you go

Problem with policy iteration: each iteration needs a policy evaluation – takes
a long time, possibly many sweeps through the state space

So . . . Value Iteration

Gillian Hayes RL Lecture 7 29th January 2007

13

Value Iteration

Just update the values for one iteration and then improve the policy.

Update rule:

V = maxa

∑
s′

P a

ss′
[Ra

ss′
+ γV (s′)]

This combines the one-iteration update plus the policy improvement
(greedification wrt V)

Gillian Hayes RL Lecture 7 29th January 2007

14

Value Iteration Algorithm

1. Initialise

• V, π = arbitrary

2. Repeat

• For each state
• Update V (s) = maxa

∑
s′

P a

ss′
[Ra

ss′
+ γV (s′)]

• Until no V changes by more than some small amount

3. Policy is

• π(s) = arg maxa

∑
s′

P a

ss′
[Ra

ss′
+ γV (s′)]

Gillian Hayes RL Lecture 7 29th January 2007

15

Asynchronous Dynamic Programming

If methods require many sweeps through the state space this can take prohibitively
long, e.g. Backgammon has 1020 states

Asynchronous DP: • Update arrays in-place AND

• No particular order on which V must be updated when – but must do all
eventually, you can’t ignore states. Gives us the freedom to choose the order in
which to backup states.

Example: Asynchronous Value Iteration

• Use value iteration backup

V (sk) = maxa

∑
s′

P a

ss′
[Ra

ss′
+ γV (s′)]

but only backup the value for one state sk on each step

Converges to V ∗ if all states backed up infinitely many times and 0 ≤ γ < 1

Gillian Hayes RL Lecture 7 29th January 2007

16

Good Points About Asynchronous DP

• Saves iterating through whole state space on any given timestep (but must
backup them all eventually)

• Can save memory (small advantage)

• Faster convergence – it takes fewer state updates to convergence

• Can prioritise sweeps – update those which have some reason to be updated,
e.g. new experience of that bit of state space (so focus on relevant states), or
their value functions are changing a lot

• Updated value function used immediately in estimates of other states’ value
function

Gillian Hayes RL Lecture 7 29th January 2007

17

• We may not care about some states – maybe we never expect to visit them –
so make their backup priority very low

We can consider interleaving the policy evaluation and policy improvements steps
at many granularities.... This is called Generalised Policy Iteration

Gillian Hayes RL Lecture 7 29th January 2007

18

Summary

• Policy Evaluation: backups without a max, find the value function for a given
policy

• Policy Improvement: make policy greedy wrt value function (if only locally)

• Policy Iteration = Policy Evaluation + Policy Improvement

• Value Iteration: backups with a max, i.e. Bellman optimality equation

• Asynchronous Dynamic Programming: avoids exhaustive sweeps through state
space when updating V

• Generalised Policy Iteration: Interleaving policy evaluation and improvement
at any granularity

Gillian Hayes RL Lecture 7 29th January 2007

19

• Bootstrapping: updating estimates based on other estimates

• Full backups: each backup takes into account all the states one can reach
from the current state in calculating the backup

Read Sutton and Barto Chapter 4

Gillian Hayes RL Lecture 7 29th January 2007

