Reinforcement Learning
 Lectures 4 and 5

Gillian Hayes
18th January 2007
informadoftics

informárics

Reinforcement Learning

- Framework
- Rewards, Returns
- Environment Dynamics
- Components of a Problem
- Values and Action Values, V and Q
- Optimal Policies
- Bellman Optimality Equations

Framework Again

Task: one instance of an RL problem - one problem set-up
Learning: how should agent change policy?
Overall goal: maximise amount of reward received over time

Goals and Rewards

Goal: maximise total reward received
Immediate reward r at each step. We must maximise expected cumulative reward:
Return $=$ Total reward $R_{t}=r_{t+1}+r_{t+2}+r_{t+3}+\cdots+r_{\tau}$
$\tau=$ final time step (episodes/trials) But what if $\tau=\infty$?

Discounted Reward

$$
\begin{aligned}
R_{t} & =r_{t+1}+\gamma r_{t+2}+\gamma^{2} r_{t+3}+\cdots \\
& =\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1}
\end{aligned}
$$

$0 \leq \gamma<1$ discount factor \rightarrow discounted reward finite if reward sequence $\left\{r_{k}\right\}$ bounded
$\gamma=0$: myopic $\quad \gamma \rightarrow 1$: agent far-sighted. Future rewards count for more

Dynamics of Environment

Choose action a in situation s : what is the probability of ending up in state s^{\prime} ? Transition probability

$$
P_{s s^{\prime}}^{a}=\operatorname{Pr}\left\{s_{t+1}=s^{\prime} \mid s_{t}=s, a_{t}=a\right\}
$$

BACKUP DIAGRAM

If action a chosen in state s and subsequent state reached is s^{\prime} what's the expected reward?

$$
R_{s s^{\prime}}^{a}=E\left\{r_{t+1} \mid s_{t}=s, a_{t}=a, s_{t+1}=s^{\prime}\right\}
$$

If we know P and R then have complete information about environment - may need to learn them

$R_{s s^{\prime}}^{a}$ and $\rho(s, a)$

Reward functions
$R_{s s^{\prime}}^{a} \quad$ expected next reward given current state s and action a and next state s^{\prime} $\rho(s, a) \quad$ expected next reward given current state s and action a

$$
\rho(s, a)=\sum_{s^{\prime}} P_{s s^{\prime}}^{a} R_{s s^{\prime}}^{a}
$$

Sometimes you will see $\rho(s, a)$ in the literature, especially that prior to 1998 when S+B was published.
Sometimes you'll also see $\rho(s)$. This is the reward for being in state s and is equivalent to a "bag of treasure" sitting on a grid-world square (e.g. computer games - weapons, health).

Sutton and Barto's Recycling Robot 1

- At each step, robot has choice of three actions:
- go out and search for a can
- wait till a human brings it a can
- go to charging station to recharge
- Searching is better (higher reward), but runs down battery. Running out of battery power is very bad and robot needs to be rescued
- Decision based on current state - is energy high or low
- Reward is no. cans (expected to be) collected, negative reward for needing rescue

This slide and the next based on an earlier version of Sutton and Barto's own slides from a previous Sutton web resource.

Sutton and Barto's Recycling Robot 2

$\mathrm{S}=\{$ high, low $\} \quad \mathrm{A}($ high $)=\{$ search, wait $\} \quad \mathrm{A}($ low $)=\{$ search, wait, recharge $\}$ $\mathrm{R}^{\text {search }}$ expected no. cans when searching $\mathrm{R}^{\text {wait }}$ expected no. cans when waiting $\mathrm{R}^{\text {search }}>R^{\text {wait }}$

Values V

Policy π maps situations $s \in S$ to (probability distribution over) actions $a \in A(s)$ V-Value of s under policy π is $V^{\pi}(s)=$ expected return starting in s and following policy π

$$
V^{\pi}(s)=E_{\pi}\left\{R_{t} \mid s_{t}=s\right\}=E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t}=s\right\}
$$

BACKUP DIAGRAM FOR V(s)

Action Values Q

Q-Action Value of taking action a in state s under policy π is $Q^{\pi}(s, a)=$ expected return starting in s, taking a and then following policy π

$$
\begin{aligned}
Q^{\pi}(s, a) & =E_{\pi}\left\{R_{t} \mid s_{t}=s, a_{t}=a\right\} \\
& =E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t}=s, a_{t}=a\right\}
\end{aligned}
$$

What is the backup diagram?

informar of of

Recursive Relationship for \mathbf{V}

$$
\begin{aligned}
V^{\pi}(s) & =E_{\pi}\left\{R_{t} \mid s_{t}=s\right\} \\
& =E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t}=s\right\} \\
& =E_{\pi}\left\{r_{t+1}+\gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} \mid s_{t}=s\right\} \\
& =\sum_{a} \pi(s, a,) \sum_{s^{\prime}} P_{s s^{\prime}}^{a}\left[R_{s s^{\prime}}^{a}+\gamma E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} \mid s_{t+1}=s^{\prime}\right\}\right] \\
& =\sum_{a} \pi(s, a,) \sum_{s^{\prime}} P_{s s^{\prime}}^{a}\left[R_{s s^{\prime}}^{a}+\gamma V^{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

This is the BELLMAN EQUATION. How does it relate to backup diagram?

Recursive Relationship for \mathbf{Q}

$$
Q^{\pi}(s, a)=\sum_{s^{\prime}} P_{s s^{\prime}}^{a}\left[R_{s s^{\prime}}^{a}+\gamma \sum_{a^{\prime}} \pi\left(s^{\prime}, a^{\prime}\right) Q\left(s^{\prime}, a^{\prime}\right)\right]
$$

Relate to backup diagram

Grid World Example

Check the V's comply with Bellman Equation
From Sutton and Barto P. 71, Fig. 3.5

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

Relating \mathbf{Q} and \mathbf{V}

$$
\begin{aligned}
Q^{\pi}(s, a) & =E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t}=s, a_{t}=a\right\} \\
& =E_{\pi}\left\{r_{t+1}+\gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} \mid s_{t}=s, a_{t}=a\right\} \\
& =\sum_{s^{\prime}} P_{s s^{\prime}}^{a}\left[R_{s s^{\prime}}^{a}+\gamma E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} \mid s_{t+1}=s^{\prime}\right\}\right] \\
& =\sum_{s^{\prime}} P_{s s^{\prime}}^{a}\left[R_{s s^{\prime}}^{a}+\gamma V_{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Relating V and Q

$$
\begin{aligned}
V^{\pi}(s) & =E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t}=s\right\} \\
& =\sum_{a} \pi(s, a) Q^{\pi}(s, a)
\end{aligned}
$$

Optimal Policies π^{*}

An optimal policy has the highest/optimal value function $V^{*}(s)$ It chooses the action in each state which will result in the highest return

Optimal Q-value $Q^{*}(s, a)$ is reward received from executing action a in state s and following optimal policy π^{*} thereafter

$$
\begin{gathered}
V^{*}(s)=\max _{\pi} V^{\pi}(s) \\
Q^{*}(s, a)=\max _{\pi} Q^{\pi}(s, a) \\
Q^{*}(s, a)=E\left\{r_{t+1}+\gamma V^{*}\left(s_{t+1}\right) \mid s_{t}=s, a_{t}=a\right\}
\end{gathered}
$$

Bellman Optimality Equations 1

Bellman equations for the optimal values and Q -values

$$
\begin{aligned}
V^{*}(s) & =\max _{a} Q^{\pi^{*}}(s, a) \\
& =\max _{a} E_{\pi^{*}}\left\{R_{t} \mid s_{t}=s, a_{t}=a\right\} \\
& =\max _{a} E_{\pi^{*}}\left\{r_{t+1}+\gamma \sum_{k} \gamma^{k} r_{t+k+2} \mid s_{t}=s, a_{t}=a\right\} \\
& =\max _{a} E\left\{r_{t+1}+\gamma V^{*}\left(s_{t+1}\right) \mid s_{t}=s, a_{t}=a\right\} \\
& =\max _{a} \sum_{s^{\prime}} P_{s s^{\prime}}^{a}\left[R_{s s^{\prime}}^{a}+\gamma V^{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
Q^{*}(s, a) & =E\left\{r_{t+1}+\gamma \max _{a^{\prime}} Q^{*}\left(s_{t+1}, a^{\prime}\right) \mid s_{t}=s, a_{t}=a\right\} \\
& =\sum_{s^{\prime}} P_{s s^{\prime}}^{a}\left[R_{s s^{\prime}}^{a}+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right)\right]
\end{aligned}
$$

Value under optimal policy $=$ expected return for best action from that state.

Bellman Optimality Equations 2

If dynamics of environment $R_{s s^{\prime}}^{a}, P_{s s^{\prime}}^{a}$ known, then can solve equations for V^{*} (or $\left.Q^{*}\right)$.

Given V^{*}, what then is optimal policy? I.e. which action a do you pick in state s ?

The one which maximises expected $r_{t+1}+\gamma V^{*}\left(s_{t+1}\right)$, i.e. the one which gives the biggest

$$
\left.\sum_{s^{\prime}} \text { (instant reward }+ \text { discounted future maximum reward }\right) * P_{s s^{\prime}}^{a}
$$

So need to do one-step search

Bellman Optimality Equations 2
There may be more than one action doing this \rightarrow all OK

All GREEDY actions

Given Q^{*}, what's the optimal policy?

The one which gives the biggest $Q^{*}(s, a)$, i.e. in state s, you have various Q values, one per action. Pick (an) action with largest Q.

informátics

Assumptions for Solving Bellman Optimality Equations

1. Know dynamics of environment $P_{s s^{\prime}}^{a}, R_{s s^{\prime}}^{a}$
2. Sufficient computational resources (time, memory)

BUT
Example: Backgammon

1. OK
2. 10^{20} states $\Rightarrow 10^{20}$ equations in 10^{20} unknowns, nonlinear equations (max)

Often use a neural network to approximate value functions, policies and models \Rightarrow compact representation
Optimal policy? Only needs to be optimal in situations we encounter - some very rarely/never encountered. So a policy that is only optimal in those states we encounter may do

Components of an RL Problem

Agent, task, environment
States, actions, rewards
Policy $\pi(s, a) \rightarrow$ probability of doing a in s
Value $V(s) \rightarrow$ number - Value of a state
Action value $Q(s, a)$ - Value of a state-action pair
Model $P_{s s^{\prime}}^{a} \rightarrow$ probability of going from $s \rightarrow s^{\prime}$ if do a
Reward function $R_{s s^{\prime}}^{a}$ from doing a in s and reaching s^{\prime}
Return $R \rightarrow$ sum of future rewards
Total future discounted reward $r_{t+1}+\gamma r_{t+2}+\gamma^{2} r_{t+3}+\cdots=\sum_{k=0}^{\infty} r_{t+k+1} \gamma^{k}$
Learning strategy to learn... (continued)

Components of an RL Problem

- value $-V$ or Q
- policy
- model
sometimes subject to conditions, e.g. learn best policy you can within given time
Learn to maximise total future discounted reward

RL Buzzwords

Actions, situations/states, rewards
Policy
Environment dynamics and model
Return, total reward, discounted rewards
Value function V, action-value function Q
Optimal value functions and optimal policy
Complete and incomplete environment information
Transition probabilities and reward function
Model-based and model-free learning methods
Temporal and spatial credit assignment
Exploration/exploitation tradeoff

