Reinforcement Learning Lecture 2

Gillian Hayes

11th January 2007

Reinforcement Learning: How Does It Work?

We detect a **state** We choose an **action** We get a **reward**

Our aim is to learn a **policy** – what action to choose in what state to get maximum reward

Maximum reward over the *long term*, not necessarily *immediate* maximum reward – watch TV now, panic over homework later vs. do homework now, watch TV while all your pals are panicking...

Bandit Problems

N-armed bandits – as in slot machines

- action selection
- evaluation
- Action-values Q: how good (in the long term) it is to do this action in this situation, Q(s,a)
- Estimating Q
- How to select an action
- Evaluation vs. instruction
 - Evaluation tells you how well you did after choosing an action
 - Instruction tells you what the right thing to do was make your action more like that next time!

Evaluation vs Instruction

RL – Training information *evaluates* the *action*. Doesn't say whether it was best or correct. Relative to all other actions – must try them all and compare to see which is best

Supervised – Training *instructs* – it gives the *correct answer* regardless of the action chosen. So there is no search in the action space in supervised learning (though may need to search parameters, e.g. neural network weights)

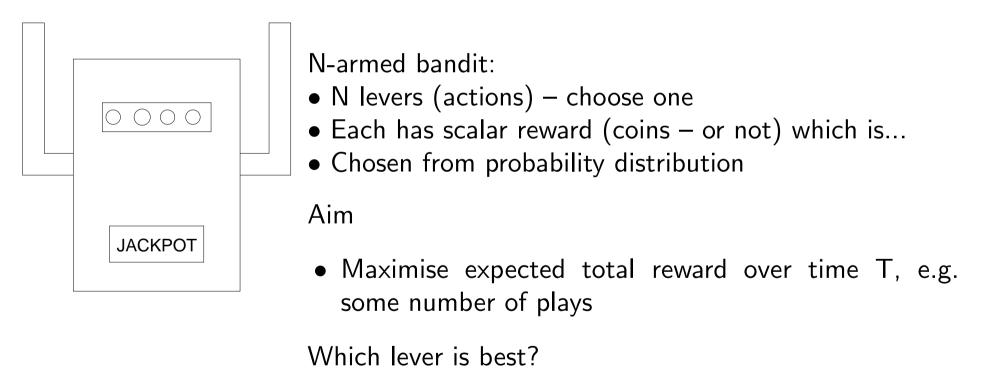
- So RL needs trial-and-error search
- must try all actions
- feedback is a scalar other actions could be better (or worse)
- learning by selection selectively choose those actions that prove to be better

What about GAGP?

What Is a Bandit Problem?

Just one state, always the same

Non-associative, not mapping $S \to A$ (since just one $s \in S$)



The Action Value Q

- $\bullet~Q=value~of~an~action$ the Expected or Mean reward from that action
- If Q-value known exactly, always choose that action with highest Q

BUT, only have estimates of Q – build up these estimates from experience of rewards

- **Greedy** action(s): have highest estimated Q: EXPLOITATION
- Other actions: lower estimated Qs: EXPLORATION

Maximise expected reward on 1 play vs. over long time?

Uncertainty in our estimates of values of Q

EXPLORATION VS. EXPLOITATION TRADEOFF

Can't exploit all the time; must sometimes explore to see if an action that currently looks bad eventually turns out to be good

How Do We Estimate Q?

True value $Q^*(a)$ of action aEstimated value $Q_t(a)$ at play/time t

Suppose we choose action $a \ k_a$ times and observe a reward r_i on play i: Then we can estimate Q^* from running mean: $Q_t(a) = \frac{r_1 + r_2 + r_3 + \dots + r_{k_a}}{k_a}$ If $k_a = 0, r_0 = 0$

As $k_a \to \infty$, $Q_t(a) \to Q^*(a)$

Sample-average method of calculating Q.

* in this case means "true value": $Q^*(a)$. Sometimes write \hat{Q} as estimated value

Action Selection

Greedy: select the action a^* for which Q is highest:

$$Q_t(a^*) = \max_a Q_t(a)$$

So $a^* = \arg \max_a Q_t(a)$ – and * means "best"

Example: 10-armed bandit

Snapshot at time t for actions 1 to 10

anformatics

 ϵ -greedy: Select random action ϵ of the time, else select greedy action

Sample all actions infinitely many times So as $k_a \to \infty$, Qs converge to Q^*

Can reduce ϵ over time

NB: Difference between $Q^*(a)$ and $Q(a^*)$ (but we are following the Sutton and Barto notation)

ϵ-Greedy vs. Greedy

- What if reward variance is larger?
- What if reward variance is very small, e.g. zero?
- What if task is nonstationary?

Which would be better in each of these cases?

Exploration and Exploitation again

Softmax Action Selection

 ϵ -greedy: even if worst action is very bad, it will still be chosen with same probability as second-best – we may not want this. So:

Vary selection probability as a function of estimated goodness

Choose a at time t from among the n actions with probability

$$\frac{\exp(Q_t(a)/\tau)}{\sum_{b=1}^n \exp(Q_t(b)/\tau)}$$

Gibbs/Boltzmann distribution, τ is temperature (from physics)

Softmax Action Selection

Drawback of softmax? What if our estimate of the value of $Q(a^*)$ is initially very low?

 $\begin{array}{l} \mbox{Effect of} \mid \tau \mid \\ \mbox{As } \tau \to \infty \mbox{, probability} \to 1/n \\ \mbox{As } \tau \to 0 \mbox{, probability} \to \mbox{greedy} \end{array}$

Incremental Update Equations

Estimate Q^* from running mean: $Q(a) = \frac{r_1 + r_2 + r_3 + \dots + r_{k_a}}{k_a}$ if we've tried action $a k_a$ times

Incremental calculation:

$$Q_{k+1} = \frac{1}{k+1} \sum_{i=1}^{k+1} r_i$$

$$= Q_k + \frac{1}{k+1} [r_{k+1} - Q_k]$$
(1)
(2)

NewEstimate = OldEstimate + StepSize [Target - OldEstimate]

Incremental Update Equations

This general form will be met often:

NewEstimate = OldEstimate + StepSize [Target - OldEstimate]

Step size α depends on k in incremental equation: $\alpha_k = 1/k$ But is often kept constant, e.g. $\alpha = 0.1$ (gives more weight to recent rewards – why might this be useful?)

Effect of Initial Values of Q

We arbitrarily set the initial values of Q to be zero. Our estimates are biassed by initial estimate of Q Can use this to include domain knowledge

Example Set all Q values very high – optimistic

Initial actual rewards are disappointing compared to estimate, so switch to another action – exploration

Temporary effect

Policy

Once we've learnt the Q values, our policy is the greedy one: choose the action with the highest Q

Application

Drug trials. You have a limited number of trials, several drugs, and need to choose the best of them. Bandit arm \approx drug Define a measure of success/failure – the reward Measure how well the patients do on each drug – estimating the Q values

Ethical clinical trials – how do we allocate patients to drug treatments? During the trial we may find that some drugs work better than others.

- Fixed allocation design: allocate 1/k of the patients to each of the k drugs
- Adaptive allocation design: if the patients on one drug appear to be doing worse, switch them to the other drugs – equivalent to removing one of the arms of the bandit

See: http://www.eecs.umich.edu/~qstout/AdaptSample.html

And: J.Hardwick, R.Oehmke,Q.Stout: A program for sequential allocation of three Bernoulli populations, Computational Statistics and Data Analysis 31, 397–416, 1999. (just scan this one)

Reading: Sutton and Barto Chapter 2.

Next: Reinforcement Learning with more than one state.