Generalisation and Function Approximation Lecture 14

Gillian Hayes

22nd February 2007

Generalisation and Function Approximation

• Tabular value functions

What happens if the size of the state/action space is large?

- Large numbers of states/actions?
- Continuously-valued states/actions?
- Most states never experienced exactly before

Memory

Time

Data

GENERALISATION: how experience with small part of state space is used to produce good behaviour over large part of state space

Methods

Neural networks, decision trees, multivariate regression ...

cf Asterix and Obelix: statistical clustering Web Crawler: neural network

As long as they can deal with:

- learning while interacting online
- nonstationarity policy changes

Combining gradient descent methods with reinforcement learning

May have to use generalisation methods to approximate states, actions, value functions, Q-value functions, policies

Examples of Feature Vectors

$$\vec{\phi_s} = \begin{pmatrix} \text{redness} \\ \text{greenness} \\ \text{roundness} \\ \text{starness} \\ \text{size} \end{pmatrix} = \begin{pmatrix} 25 \\ 3 \\ 2 \\ 15 \\ 25 \end{pmatrix}$$

- \bullet "Redness" = say closeness to 111111110000000000000 (RGB, R=255, G=0, B=0)
- "Roundness" = say distance of points from enclosing circle
- "Starness" = say some combination of number of points, template matching to a star shape, high spatial frequency components of boundary

$$\vec{\phi_s} = \begin{pmatrix} x \\ y \\ heading \\ batterypower \end{pmatrix}$$

- Position in x, y coordinates (real numbers)
- Heading in degrees w.r.t. north (real number or quantised)
- Battery power = some real number

Gradient Descent SARSA(λ)

Constant policy \Rightarrow converges like TD(λ) Combine with policy improvement?

- Discrete action set
 - compute $Q_t(s_t, a)$ for all a possible in s_t
 - find greedy action $a_t^* = \arg max_a \ Q_t(s_t,a)$
 - change estimation policy to
 - * greedy (off-policy)
 - * soft approximation (on-policy)