
Generalisation and Function Approximation

Lecture 14

Gillian Hayes

22nd February 2007

Gillian Hayes RL Lecture 14 22nd February 2007



1

Generalisation and Function Approximation
• Tabular value functions

action

state
0.1 0.3 0.7 0.2

0.4

0.2

... ... ...

... ... ...

Q(s,a)

What happens if the size of the state/action space is large?

Gillian Hayes RL Lecture 14 22nd February 2007



2

• Large numbers of states/actions?

• Continuously-valued states/actions?

• Most states never experienced exactly before

Memory
Time
Data

GENERALISATION: how experience with small part of state space is used to
produce good behaviour over large part of state space

Gillian Hayes RL Lecture 14 22nd February 2007



3

Methods
Neural networks, decision trees, multivariate regression ...

cf Asterix and Obelix: statistical clustering
Web Crawler: neural network

As long as they can deal with:

• learning while interacting – online
• nonstationarity – policy changes

Combining gradient descent methods with reinforcement learning

May have to use generalisation methods to approximate states, actions, value
functions, Q-value functions, policies

Gillian Hayes RL Lecture 14 22nd February 2007



4

Examples of Feature Vectors

~φs =













redness

greenness

roundness

starness

size













=













25

3

2

15

25













• “Redness” = say closeness to 111111110000000000000000 (RGB, R=255,
G=0, B=0)

• “Roundness” = say distance of points from enclosing circle

• “Starness” = say some combination of number of points, template matching
to a star shape, high spatial frequency components of boundary

Gillian Hayes RL Lecture 14 22nd February 2007



5

~φs =









x

y

heading

batterypower









• Position in x, y coordinates (real numbers)

• Heading in degrees w.r.t. north (real number or quantised)

• Battery power = some real number

Gillian Hayes RL Lecture 14 22nd February 2007



6

Gradient Descent SARSA(λ)

Constant policy ⇒ converges like TD(λ)

Combine with policy improvement?

• Discrete action set

• compute Qt(st, a) for all a possible in st

• find greedy action a∗
t

= arg maxa Qt(st,a)
• change estimation policy to

* greedy (off-policy)
* soft approximation (on-policy)

Gillian Hayes RL Lecture 14 22nd February 2007


