Reinforcement Learning Lecture 8

Gillian Hayes

1st February 2007

Gillian Hayes RL Lecture 8 1st February 2007

Monte Carlo Methods

- Learn value functions
- Discover optimal policies
- Don't require environmental knowledge: $P^a_{ss'}$, $R^a_{ss'}$, cf. Dynamic Programming
- Experience: sample sequences of states, actions, rewards s, a, r
 : real experience, simulated experience
- Attains optimal behaviour

Algorithms for Solving RL: Monte Carlo Methods

- What are they?
- Monte Carlo Policy Evaluation
- First-visit policy evaluation
- Estimating Q-values
- On-policy methods
- Off-policy methods

Gillian Hayes RL Lecture 8 1st February 2007

How Does Monte Carlo Do This?

- Divide experience into episodes
 - all episodes must terminate
 e.g. noughts-and-crosses, card games
- Keep estimates of value functions, policies
- Change estimates/policies at end of each episode
- \Rightarrow Keep track of $s_1,a_1,r_1,s_2,a_2,r_2,\dots s_{T-1},a_{T-1},r_{T-1},s_T$ $s_T=\text{terminating state}$
- Incremental episode-by-episode
 NOT step-by-step cf. DP
- Average **complete** returns NOT partial returns

Returns

- Return at time t: $R_t = r_{t+1} + r_{t+2} + \dots r_{T-1} + r_T$ for each episode r_T is a terminating state
- Average the returns over many episodes starting from some state s.

This gives the value function $V^{\pi}(s)$ for that state for policy π since the state value $V^{\pi}(s)$ is the expected cumulative future discounted reward starting in s and following policy π .

Gillian Hayes RL Lecture 8 1st February 2007

Backup Diagram for MC



One Episode – full episode needed before back-up. cf DP which backs up after one move Monte Carlo does **not** bootstrap but Monte Carlo does sample

Terminal state s_T

f informatics

Monte Carlo Learning of V^{π}

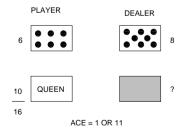
MC methods estimate from experience: generate many "plays" from s, observe total reward on each play, average over many plays

- 1. Initialise
 - $\pi = \text{arbitrary policy to be evaluated}$
 - ullet V= arbitrary value function
 - Returns(s) an empty list, one for each state s
- 2. Repeat till values converge
 - ullet Generate an episode using π
 - For each state appearing in the episode
 - R= return following first occurrence of s
 - Append R to Returns(s)
 - -V(s) = average Returns(s)

Gillian Hayes RL Lecture 8 1st February 2007

Blackjack

Sum on cards to be as close to 21 as possible



Plaver:

- HIT = take another card
- ullet STICK o Dealer's turn or GOES BUST > 21 o loses

• Dealer's fixed strategy STICK if ≥ 17 HIT if < 17

Outcome: if $> 21 \Rightarrow \mathsf{LOSE}$ CLOSEST TO $21 \Rightarrow \mathsf{WIN}$ EQUALLY CLOSE $\Rightarrow \mathsf{DRAW}$

Gillian Hayes RL Lecture 8 1st February 2007

- Play many games
- Average returns (first-visit MC) following each state
- ⇒ True state-value functions
 - * Easier than DP \Rightarrow That needs $P_{ss'}^a, R_{ss'}^a$
 - * Easier to generate episodes than calculate probabilities

Blackjack: MC Episodic Task

- * Reward +1, -1, 0 for win, lose, draw
- * Reward within game = 0
- * No discount \Rightarrow Return = +1, -1, 0
- * Actions: HIT, STICK
- * States (sum on own cards, dealer's face-up card, usable ace): 200 if sum on own cards <11 no decision, always HIT
- * Example policy π : If own sum < 20 HIT Else STICK

Gillian Hayes RL Lecture 8 1st February 2007

Policy Iteration (Reminder)

- Policy evaluation: Estimate V^π or Q^π for fixed policy π
- Policy improvement: Get a policy better than $\boldsymbol{\pi}$

Iterate until optimal policy/value function is reached

So we can do Monte Carlo as the Policy Evaluation step of Policy Iteration because it computes the value function for a given policy. (There are other algorithms we can use.)

First-visit MC vs. Every-visit MC

In each episode observe return following **first** visit to state sNumber of first visits to s must $\to \infty$

Converges to $V^{\pi}(s)$

cf. Every-visit MC

Calculate ${\cal V}$ as the average over return following ${\bf every}$ visit to state s in a set of episodes

Gillian Hayes RL Lecture 8 1st February 2007

Estimating Q-Values

 $Q^{\pi}(s,a)$ – similarly to V

Update by averaging returns following first visit to that state-action pair

Problem

If π deterministic, some/many (s, a) never visited

MUST EXPLORE!

So...

- * Exploring starts: start every episode at a different (s,a) pair
- * Or always use ϵ -greedy or ϵ -soft policies
 - stochastic, where $\pi(s,a) > 0$

nformatics

Good Properties of MC

Estimates of V for each state are independent

- no bootstrapping

Compute time to calculate changes (i.e. V of each state) is independent of number of states

If values of only a few states needed, generate episodes from these states \Rightarrow can ignore other states

Can learn from actual/simulated experience

Don't need $P_{ss'}^a$, $R_{ss'}^a$,

Gillian Hayes RL Lecture 8 1st February 2007

Optimal Policies – Control Problem

Policy Iteration on ${\cal Q}$

$$\pi_0 \rightarrow_{PE} Q^{\pi^0} \rightarrow_{PI} \pi_1 \rightarrow_{PE} Q^{\pi^1} \rightarrow_{PI} \pi_2 \dots \rightarrow_{PI} \pi^* \rightarrow_{PE} Q^*$$

- ullet Policy Improvement: Make π greedy w.r.t. current Q
- \bullet Policy Evaluation: As before, with ∞ episodes

Or episode-by-episode iteration. After an episode:

- policy evaluation (back-up)
- improve policy at states in episode
- eventually converges to optimal values and policy

Can use exploring starts: MCES – Monte Carlo Exploring Starts to ensure coverage of state/action space

Algorithm: see e.g. S+B Fig. 5.4

Gillian Hayes RL Lecture 8 1st February 2007

On-Policy Control

Evaluate and improve the policy used to generate behaviour Use a soft policy:

$$\begin{split} \pi(s,a) &> 0 \ \ \forall s, \forall a & \text{GENERAL SOFT POLICY DEFINITION} \\ \pi(s,a) &= \frac{\epsilon}{|A|} & \text{if } a \text{ not greedy} & \epsilon\text{-GREEDY} \\ &= 1 - \epsilon + \frac{\epsilon}{|A|} & \text{if } a \text{ greedy} \\ \pi(s,a) &\geq \frac{\epsilon}{|A|} \ \ \forall s, \forall a & \epsilon\text{-SOFT} \end{split}$$

POLICY ITERATION

Evaluation: as before Improvement: move towards ϵ -greedy policy (not greedy) Avoids need for exploring starts ϵ -greedy is "closer" to greedy than other ϵ -soft policies

nformatics

Monte Carlo: Estimating $Q^{\pi}(s,a)$

- If π deterministic, some (s,a) not visited \Rightarrow can't improve their Q estimates MUST MAINTAIN EXPLORATION!
- Use exploring starts → optimal policy
- Use an ϵ -soft policy ON-POLICY CONTROL $\to \epsilon$ -greedy policy OFF-POLICY CONTROL \to optimal policy

Gillian Hayes RL Lecture 8 1st February 2007

Off-Policy Control

- Behaviour policy π' generates moves
- ullet But in off-policy control we learn an Estimation policy $\pi.$ How?

We need to:

- compute the weighted average of returns from behaviour policy
- the weighting factors are the probability of them being in estimation policy,
- ullet i.e. weight each return by relative probability of being generated by π and π' In detail...

Can You Learn π While Following π' ?

We need: Estimation policy $\pi(s,a)>0\Rightarrow$ Behaviour policy $\pi'(s,a)>0$

So if we want to estimate it, it MUST appear in behaviour policy

On the ith first visit to state s, let:

 $p_i(s)=$ probability of getting subsequent sequence of states and actions from π (ESTIMATION)

 $p_i'(s) = \text{probability of getting subsequent sequence of states and actions from } \pi'$ (BEHAVIOUR)

$$p_i(s_t) = \prod_{k=t}^{T_i(s)-1} \pi(s_k, a_k) P_{s_k s_{k+1}}^{a_k}$$

Gillian Hayes RL Lecture 8 1st February 2007

$$p'_{i}(s_{t}) = \prod_{k=t}^{T_{i}(s)-1} \pi'(s_{k}, a_{k}) P^{a_{k}}_{s_{k}s_{k+1}}$$

$$\frac{p_{i}(s_{t})}{p'_{i}(s_{t})} = \prod_{k=t}^{T_{i}(s)-1} \frac{\pi(s_{k}, a_{k})}{\pi'(s_{k}, a_{k})}$$

Doesn't depend on environment

$$p_i'(s_t) = \prod_{k=t}^{T_i(s)-1} \pi'(s_k, a_k) P_{s_k s_{k+1}}^{a_k}$$

 $R_i'(s) = \text{return observed}$

Then after n_s returns experienced from state s (so episodes in which s occurs):

$$V^{\pi}(s) = \frac{\sum_{i=1}^{n_s} \frac{p_i(s)}{p'_i(s)} R'_i(s)}{\sum_{i=1}^{n_s} \frac{p_i(s)}{p'_i(s)}}$$
$$p_i(s_t) = \prod_{k=t}^{T_i(s)-1} \pi(s_k, a_k) P_{s_k s_{k+1}}^{a_k}$$

Gillian Hayes RL Lecture 8 1st February 2007

Off-Policy MC Algorithm

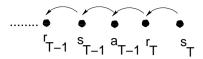
How to use this formula to get Q-values?

- Use Behaviour Policy π' to generate moves must be soft so that all (s,a) continue to be explored
- Evaluate and improve Estimation Policy π converges to optimal policy

So...

- 1. BP π' generates episode
- 2. EP π is deterministic and gives the greedy actions w.r.t. the current estimate of Q^π

3. Start at end of episode, work backwards



till BP and EP give divergent actions, e.g. back to time t

4. For this chain of states and actions compute

$$\frac{p_i(s_t)}{p_i'(s_t)} = \prod_{k=t}^{T_i(s)-1} \frac{\pi(s_k, a_k)}{\pi'(s_k, a_k)}$$

i.e. we are able to find out about state s_t

Gillian Hayes RL Lecture 8 1st February 2007

 $R'={\sf return}$ for the chain of states/actions (see 3) following (s,a) (it's different for each of the N visits)

- 6. Do for each (s, a) in chain (see 3)
- 7. Improve π (estimation policy) to be greedy w.r.t. Q:

$$\pi(s) = \arg\max_a Q(s, a)$$

(Still deterministic)

Takes a long time because we can only use the information from the end of the episode in each iteration.

 π is deterministic so $\pi(s_k,a_k)$ etc. =1

So

$$\frac{p_i(s_t)}{p_i'(s_t)} = \prod_{k=t}^{T_i(s)-1} \frac{1}{\pi'(s_k, a_k)}$$

5.

$$Q(s,a) = \frac{\sum \frac{p_i}{p_i'} R'}{\sum \frac{p_i}{p_i'}}$$

averaged over no. times this (s,a) has been visited, say N

Gillian Hayes RL Lecture 8 1st February 2007

Summing Up

- \bullet MC methods learn V and Q from experience sample episodes.
- Don't need to know dynamics of environment.
- Can learn from simulated experience.
- Can focus them on those parts of the state space we're interested in.
- May be less harmed by violations of Markov property, because they don't bootstrap.
- Need to maintain sufficient exploration exploring starts or on-policy or off-policy methods.