Reinforcement Learning Lectures 7

Gillian Hayes

29th January 2007

Gillian Hayes RL Lecture 7 29th January 2007

Dynamic Programming

Needs perfect model $P^a_{ss'}$ and $R^a_{ss'}$.

We want to compute V^{\ast} , Q^{\ast} , the optimal value and action-value functions

POLICY EVALUATION

Suppose we have some policy π which tells us what action a to choose in state s. Find the value function $V^\pi(s)$ of this policy, i.e. eVALUate this policy. Bellman Equation for $V^\pi(s)$:

$$V^{\pi}(s) = E_{\pi}\{r_{t+1} + \gamma V^{\pi}(s_{t+1}) \mid s_t = s\}$$

=
$$\sum_{a} \pi(s, a,) \sum_{s'} P_{ss'}^{a}[R_{ss'}^{a} + \gamma V^{\pi}(s')]$$

Soluble, but BIG – $\mid S \mid$ equations in $\mid S \mid$ unknowns. So we need to iterate....

Algorithms for Solving RL: Dynamic Programming

- Policy Evaluation
- Iterative Policy Evaluation
- Policy Improvement
- Policy Evaluation + Policy Improvement = Policy Iteration
- Value Iteration
- Asynchronous Dynamic Programming
- Generalised Policy Iteration

Gillian Hayes RL Lecture 7 29th January 2007

Iterative Policy Evaluation 1

We apply a "sweep", i.e. a **backup operation** to **each** state to compute the value at that state. Each sweep (\rightarrow) updates our current estimate of the value function.

$$V_0 \to V_1 \to \dots V_k \to V_{k+1} \dots \to V^{\pi}$$

Update the value at state s thus:

$$V_{k+1}(s) = \sum_{a} \pi(s, a, 1) \sum_{s'} P_{ss'}^{a} [R_{ss'}^{a} + \gamma V_{k}(s')]$$

In other words, we're using the Bellman equation as an iterative update equation Update the V's for *all states* iteratively. This is called **a full policy evaluation backup**. After many sweeps we'll converge to $V^{\pi}(s)$

Gillian Hayes RL Lecture 7 29th January 2007 Gillian Hayes RL Lecture 7 29th January 2007

Iterative Policy Evaluation 2

1. Start with arbitrary V values

2. Iterate/update

 \Rightarrow get V for that policy

 V^{π} is a fixed point – it solves the Bellman equation

So: GIVEN π

WE NOW HAVE V^π

Is it possible to improve policy π ?

Yes, we can do policy improvement

Gillian Hayes RL Lecture 7 29th January 2007

29th January 2007

Policy Improvement 2

Improve the policy at each state. We get a new policy π' that's greedy wrt V^{π} .

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$
$$= \arg\max_{a} \sum_{s'} P^{a}_{ss'} [R^{a}_{ss'} + \gamma V^{\pi}(s')]$$

RL Lecture 7

In this case the new policy is better than the old: $V^{\pi'}(s) > V^{\pi}(s)$

"Greedification"

Gillian Hayes

If
$$V^{\pi'}(s) = V^{\pi}(s)$$
, then

Policy Improvement 1

We have V^{π} for our policy π . Can we choose a better action than that stipulated by π ? In other words, an $a \neq \pi(s)$.

The value of choosing action a in state s is the Q-value:

$$Q^{\pi}(s,a) = E_{\pi}\{r_{t+1} + \gamma V^{\pi}(s_{t+1}) \mid s_t = s, a_t = a\}$$
$$= \sum_{s'} P_{ss'}^{a}[R_{ss'}^{a} + \gamma V^{\pi}(s')]$$

If $Q^{\pi}(s,a)$ is greater than our current estimate $V^{\pi}(s)$ then we should choose a.

Do this for each state: **policy improvement** - because we're changing to a policy that gets us more return.

Gillian Hayes RL Lecture 7 29th January 2007

$$V^{\pi'}(s) = \max_{a} \sum_{s'} P^{a}_{ss'} [R^{a}_{ss'} + \gamma V^{\pi}(s')]$$

This is the Bellman Optimality Equation, and the value function and policies are optimal:

$$V^\pi = V^*$$
 and $\pi = \pi' = \pi^*$

So...

Alternate Policy Evaluation and Policy Improvement

Evaluate – Improve – Evaluate – Improve – Evaluate . . . $\pi_0 \to_{PE} V^{\pi^0} \to_{PI} \pi_1 \to_{PE} V^{\pi^1} \to_{PI} \pi_2 \ldots \ldots \to_{PI} \pi^* \to_{PE} V^*$

- Start with a policy
- \bullet EVALUate to give V, the value function
- Improve policy
- \bullet EVALUate to get new V for improved policy
- Improve policy

Gillian Hayes RL Lecture 7 29th January 2007

Policy Iteration

- 1. Initialise
 - $\pi = \text{arbitrary deterministic policy}$
 - ullet V= arbitrary value function
 - ullet $\theta = \mathrm{small}$ positive number
- 2. Policy Evaluation
 - For each state
 - $\bullet \ \mbox{New} \ V = \sum_{s'} P^a_{ss'} [R^a_{ss'} + \gamma V(s')] \ \mbox{where} \ a = \pi(s)$
 - Repeat until no V changes by more than θ
- 3. Policy Improvement
 - For each state

- etc.
- Get optimal policy
- Get optimal value function

This process is called **Policy Iteration**

Gillian Hayes RL Lecture 7 29th January 2007

- Get $b = \pi(s)$
- New $\pi = \arg\max_{a} \sum_{s'} P_{ss'}^{a} [R_{ss'}^{a} + \gamma V(s')]$
- If policy changed, i.e. new $\pi(s) \neq b$, goto 2
- 4. Stop

Issues, Improvements

In **policy evaluation** new values V_{k+1} are calculated in terms of V_k , so need *two* arrays.

Could update "in place", overwriting *one* array of Vs as soon as new value is calculated. So some updates use already updated V_k values — uses new data as it becomes available.

In-place converges faster than two-array version

Jargon "Sweep" through state space – updating values as you go

Problem with policy iteration: each iteration needs a policy evaluation – takes a long time, possibly many sweeps through the state space

So ... Value Iteration

Gillian Hayes RL Lecture 7 29th January 2007

Value Iteration Algorithm

- 1. Initialise
 - V, $\pi = \text{arbitrary}$
- 2. Repeat
 - For each state
 - Update $V(s) = \max_a \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma V(s')]$
 - ullet Until no V changes by more than some small amount
- 3. Policy is
 - $\pi(s) = \arg\max_{a} \sum_{s'} P_{ss'}^{a} [R_{ss'}^{a} + \gamma V(s')]$

Value Iteration

Just update the values for *one* iteration and then improve the policy. Update rule:

$$V = \max_{a} \sum_{s'} P_{ss'}^{a} [R_{ss'}^{a} + \gamma V(s')]$$

This combines the one-iteration update plus the policy improvement (greedification wrt V)

Gillian Hayes RL Lecture 7 29th January 2007

Asynchronous Dynamic Programming

If methods require many sweeps through the state space this can take prohibitively long, e.g. Backgammon has 10^{20} states

Asynchronous DP: • Update arrays in-place AND

ullet No particular order on which V must be updated when — but must do all eventually, you can't ignore states. Gives us the freedom to choose the order in which to backup states.

Example: Asynchronous Value Iteration

• Use value iteration backup

$$V(s_k) = \max_a \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma V(s')]$$

but only backup the value for one state s_k on each step

Converges to V^* if all states backed up infinitely many times and $0 \le \gamma < 1$

Gillian Hayes RL Lecture 7 29th January 2007 Gillian Hayes RL Lecture 7 29th January 2007

Good Points About Asynchronous DP

- Saves iterating through whole state space on any given timestep (but must backup them all eventually)
- Can save memory (small advantage)
- Faster convergence it takes fewer state updates to convergence
- Can prioritise sweeps update those which have some reason to be updated, e.g. new experience of that bit of state space (so focus on relevant states), or their value functions are changing a lot
- Updated value function used immediately in estimates of other states' value function

Gillian Hayes RL Lecture 7 29th January 2007

Summary

- Policy Evaluation: backups without a max, find the value function for a given policy
- Policy Improvement: make policy greedy wrt value function (if only locally)
- Policy Iteration = Policy Evaluation + Policy Improvement
- Value Iteration: backups with a max, i.e. Bellman optimality equation
- \bullet Asynchronous Dynamic Programming: avoids exhaustive sweeps through state space when updating V
- Generalised Policy Iteration: Interleaving policy evaluation and improvement at any granularity

 We may not care about some states – maybe we never expect to visit them – so make their backup priority very low

We can consider interleaving the policy evaluation and policy improvements steps at many granularities.... This is called **Generalised Policy Iteration**

Gillian Hayes RL Lecture 7 29th January 2007

- Bootstrapping: updating estimates based on other estimates
- Full backups: each backup takes into account all the states one can reach from the current state in calculating the backup

Read Sutton and Barto Chapter 4

Gillian Hayes RL Lecture 7 29th January 2007 Gillian Hayes RL Lecture 7 29th January 2007