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Dynamic Programming
Needs perfect model P¢, and R?,.
We want to compute V*, @Q*, the optimal value and action-value functions
POLICY EVALUATION

Suppose we have some policy 7 which tells us what action a to choose in state
s. Find the value function V7 (s) of this policy, i.e. eVALUate this policy.

Bellman Equation for V7 (s):

VT(s) = Ex{rie1 +7V™(st41) | st = s}
= Y w(s,a,) > PR, + V()]

Soluble, but BIG — | S | equations in | S| unknowns. So we need to iterate....
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Algorithms for Solving RL: Dynamic Programming

e Policy Evaluation

Iterative Policy Evaluation

Policy Improvement

Policy Evaluation + Policy Improvement = Policy lteration

Value lteration

Asynchronous Dynamic Programming

Generalised Policy Iteration
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Iterative Policy Evaluation 1

We apply a “sweep”, i.e. a backup operation to each state to compute the
value at that state. Each sweep (—) updates our current estimate of the value
function.

V()Hvlﬂ...vk%vk_._l...—)vﬂ

Update the value at state s thus:
Viga(s) = D m(s,a,) Y Ply[Rey +7Vil(s)]

In other words, we're using the Bellman equation as an iterative update equation

Update the V's for all states iteratively. This is called a full policy evaluation
backup. After many sweeps we'll converge to V7 (s)
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Iterative Policy Evaluation 2
1. Start with arbitrary V' values
2. lterate/update

= get V for that policy
V™ is a fixed point — it solves the Bellman equation

So: GIVEN 7
WE NOW HAVE V™

Is it possible to improve policy 77

Yes, we can do policy improvement
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Policy Improvement 2
Improve the policy at each state. We get a new policy 7’ that's greedy wrt V7.

7'(s) = argmaxQ™(s,a)
= argmax Z P[RS, + AV ()]
In this case the new policy is better than the old: V™ (s) > V7™ (s)

“Greedification”

If V™'(s) = V7™(s), then
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Policy Improvement 1

We have V7™ for our policy . Can we choose a better action than that stipulated
by 7?7 In other words, an a # 7(s).

The value of choosing action a in state s is the Q-value:

Q" (s,a) = Ex{rign +9V7"(st41) | 5t = 5,0y = a}
= ZP;IS’[Rgs’ + V7 (s")]

If Q™(s,a) is greater than our current estimate V™ (s) then we should choose a.

Do this for each state: policy improvement - because we're changing to a policy
that gets us more return.
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V™ (s) = max, ¥ PL[RY, +AV7(s)]

This is the Bellman Optimality Equation, and the value function and policies are
optimal:
Vi=V*andm=n'=7n*

So...
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Alternate Policy Evaluation and Policy
Improvement

Evaluate — Improve — Evaluate — Improve — Evaluate ...

0 1
Ty —PE VT —p] T1 —PE \% —P] T2eeeeeeo.. —PJ * —PE 1%

e Start with a policy

e EVALUate to give V, the value function

e Improve policy

e EVALUate to get new V for improved policy

e Improve policy
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Policy lteration

1. Initialise
e 7 = arbitrary deterministic policy
e V' = arbitrary value function
e O = small positive number

2. Policy Evaluation

e For each state
o New V =3 P%[R%, +~yV(s')] where a = 7(s)
e Repeat until no V' changes by more than 6

3. Policy Improvement

e For each state
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e Get optimal policy

e Get optimal value function

This process is called Policy Iteration
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o Get b=7(s)
e New m = argmax, y_, P%,[R?, + vV (s')]

e If policy changed, i.e. new 7(s) # b, goto 2

4. Stop
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Issues, Improvements

In policy evaluation new values Vj.11 are calculated in terms of Vj, so need two
arrays.

Could update "“in place”, overwriting one array of Vs as soon as new value is
calculated. So some updates use already updated V} values — uses new data as
it becomes available.

In-place converges faster than two-array version
Jargon “Sweep” through state space — updating values as you go

Problem with policy iteration: each iteration needs a policy evaluation — takes
a long time, possibly many sweeps through the state space

So ... Value lteration
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Value lteration Algorithm

1. Initialise

e V., m = arbitrary

2. Repeat

e For each state
e Update V(s) = max, ), P%/[RY, +~V(s')]

e Until no V changes by more than some small amount

3. Policy is
o 7(s) =argmaxg y P%/[Re, +V(s)]

ss!
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Value lteration

Just update the values for one iteration and then improve the policy.
Update rule:

V =max, Y, P%[R, +V(s')]

This combines the one-iteration update plus the policy improvement
(greedification wrt V)
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Asynchronous Dynamic Programming

If methods require many sweeps through the state space this can take prohibitively
long, e.g. Backgammon has 102° states

Asynchronous DP: e Update arrays in-place AND

e No particular order on which V' must be updated when — but must do all
eventually, you can’t ignore states. Gives us the freedom to choose the order in
which to backup states.

Example: Asynchronous Value lteration

e Use value iteration backup

V(sk) = max, y_ P2 [Re, +~V(s)]

but only backup the value for one state s; on each step

Converges to V* if all states backed up infinitely many times and 0 < vy < 1
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Good Points About Asynchronous DP

e Saves iterating through whole state space on any given timestep (but must
backup them all eventually)

e Can save memory (small advantage)

e Faster convergence — it takes fewer state updates to convergence

e Can prioritise sweeps — update those which have some reason to be updated,
e.g. new experience of that bit of state space (so focus on relevant states), or

their value functions are changing a lot

e Updated value function used immediately in estimates of other states’ value
function
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Summary

e Policy Evaluation: backups without a max, find the value function for a given
policy

e Policy Improvement: make policy greedy wrt value function (if only locally)
e Policy Iteration = Policy Evaluation + Policy Improvement
e Value lteration: backups with a max, i.e. Bellman optimality equation

e Asynchronous Dynamic Programming: avoids exhaustive sweeps through state
space when updating V'

e Generalised Policy lteration: Interleaving policy evaluation and improvement
at any granularity
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e We may not care about some states — maybe we never expect to visit them —
so make their backup priority very low

We can consider interleaving the policy evaluation and policy improvements steps
at many granularities.... This is called Generalised Policy Iteration
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e Bootstrapping: updating estimates based on other estimates

e Full backups: each backup takes into account all the states one can reach
from the current state in calculating the backup

Read Sutton and Barto Chapter 4
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