Reinforcement Learning
Lectures 7

Gillian Hayes

29th January 2007

® School of _ e
informatics
Gillian Hayes RL Lecture 7 29th January 2007

° School of _e
s informatics

Dynamic Programming
Needs perfect model P¢, and R?,.
We want to compute V*, @Q*, the optimal value and action-value functions
POLICY EVALUATION

Suppose we have some policy 7 which tells us what action a to choose in state
s. Find the value function V7 (s) of this policy, i.e. eVALUate this policy.

Bellman Equation for V7 (s):

VT(s) = Ex{rie1 +7V™(st41) | st = s}
= Y w(s,a,) > PR, + V()]

Soluble, but BIG — | S | equations in | S| unknowns. So we need to iterate....

Gillian Hayes RL Lecture 7 29th January 2007

School of

- informatics
Algorithms for Solving RL: Dynamic Programming

e Policy Evaluation

Iterative Policy Evaluation

Policy Improvement

Policy Evaluation + Policy Improvement = Policy lteration

Value lteration

Asynchronous Dynamic Programming

Generalised Policy Iteration

Gillian Hayes RL Lecture 7 29th January 2007

° School of _e
s informatics

Iterative Policy Evaluation 1

We apply a “sweep”, i.e. a backup operation to each state to compute the
value at that state. Each sweep (—) updates our current estimate of the value
function.

V()Hvlﬂ...vk%vk_._l...—)vﬂ

Update the value at state s thus:
Viga(s) = D m(s,a,) Y Ply[Rey +7Vil(s)]

In other words, we're using the Bellman equation as an iterative update equation

Update the V's for all states iteratively. This is called a full policy evaluation
backup. After many sweeps we'll converge to V7 (s)

Gillian Hayes RL Lecture 7 29th January 2007

L] School of _ o
- informatics

Iterative Policy Evaluation 2
1. Start with arbitrary V' values
2. lterate/update

= get V for that policy
V™ is a fixed point — it solves the Bellman equation

So: GIVEN 7
WE NOW HAVE V™

Is it possible to improve policy 77

Yes, we can do policy improvement

Gillian Hayes RL Lecture 7 29th January 2007

° School of _e
= informatics

Policy Improvement 2
Improve the policy at each state. We get a new policy 7’ that's greedy wrt V7.

7'(s) = argmaxQ™(s,a)
= argmax Z P[RS, + AV ()]
In this case the new policy is better than the old: V™ (s) > V7™ (s)

“Greedification”

If V™'(s) = V7™(s), then

Gillian Hayes RL Lecture 7 29th January 2007

School of

e .
= iInformatics

Policy Improvement 1

We have V7™ for our policy . Can we choose a better action than that stipulated
by 7?7 In other words, an a # 7(s).

The value of choosing action a in state s is the Q-value:

Q" (s,a) = Ex{rign +9V7"(st41) | 5t = 5,0y = a}
= ZP;IS’[Rgs’ + V7 (s")]

If Q™(s,a) is greater than our current estimate V™ (s) then we should choose a.

Do this for each state: policy improvement - because we're changing to a policy
that gets us more return.

Gillian Hayes RL Lecture 7 29th January 2007

° School of _e
= informatics

V™ (s) = max, ¥ PL[RY, +AV7(s)]

This is the Bellman Optimality Equation, and the value function and policies are
optimal:
Vi=V*andm=n'=7n*

So...

Gillian Hayes RL Lecture 7 29th January 2007

L] School of _ o
= informatics

Alternate Policy Evaluation and Policy
Improvement

Evaluate — Improve — Evaluate — Improve — Evaluate ...

0 1
Ty —PE VT —p] T1 —PE \% —P] T2eeeeeeo.. —PJ * —PE 1%

e Start with a policy

e EVALUate to give V, the value function

e Improve policy

e EVALUate to get new V for improved policy

e Improve policy

Gillian Hayes RL Lecture 7 29th January 2007

° School of _e
= informatics

Policy lteration

1. Initialise
e 7 = arbitrary deterministic policy
e V' = arbitrary value function
e O = small positive number

2. Policy Evaluation

e For each state
o New V =3 P%[R%, +~yV(s')] where a = 7(s)
e Repeat until no V' changes by more than 6

3. Policy Improvement

e For each state

Gillian Hayes RL Lecture 7 29th January 2007

School of

e etc.
e Get optimal policy

e Get optimal value function

This process is called Policy Iteration

e .
s iInformatics

Gillian Hayes RL Lecture 7

29th January 2007

School of

o Get b=7(s)
e New m = argmax, y_, P%,[R?, + vV (s')]

e If policy changed, i.e. new 7(s) # b, goto 2

4. Stop

° .
= informatics

Gillian Hayes RL Lecture 7

29th January 2007

L] School of _ o
- informatics

Issues, Improvements

In policy evaluation new values Vj.11 are calculated in terms of Vj, so need two
arrays.

Could update "“in place”, overwriting one array of Vs as soon as new value is
calculated. So some updates use already updated V} values — uses new data as
it becomes available.

In-place converges faster than two-array version
Jargon “Sweep” through state space — updating values as you go

Problem with policy iteration: each iteration needs a policy evaluation — takes
a long time, possibly many sweeps through the state space

So ... Value lteration

Gillian Hayes RL Lecture 7 29th January 2007

° School of _e
= informatics

Value lteration Algorithm

1. Initialise

e V., m = arbitrary

2. Repeat

e For each state
e Update V(s) = max,), P%/[RY, +~V(s')]

e Until no V changes by more than some small amount

3. Policy is
o 7(s) =argmaxg y P%/[Re, +V(s)]

ss!

Gillian Hayes RL Lecture 7 29th January 2007

School of

e .
= informatics

Value lteration

Just update the values for one iteration and then improve the policy.
Update rule:

V =max, Y, P%[R, +V(s')]

This combines the one-iteration update plus the policy improvement
(greedification wrt V)

Gillian Hayes RL Lecture 7 29th January 2007

° School of _e
= informatics

Asynchronous Dynamic Programming

If methods require many sweeps through the state space this can take prohibitively
long, e.g. Backgammon has 102° states

Asynchronous DP: e Update arrays in-place AND

e No particular order on which V' must be updated when — but must do all
eventually, you can’t ignore states. Gives us the freedom to choose the order in
which to backup states.

Example: Asynchronous Value lteration

e Use value iteration backup

V(sk) = max, y_ P2 [Re, +~V(s)]

but only backup the value for one state s; on each step

Converges to V* if all states backed up infinitely many times and 0 < vy < 1

Gillian Hayes RL Lecture 7 29th January 2007

L] School of _ o
— informatics

Good Points About Asynchronous DP

e Saves iterating through whole state space on any given timestep (but must
backup them all eventually)

e Can save memory (small advantage)

e Faster convergence — it takes fewer state updates to convergence

e Can prioritise sweeps — update those which have some reason to be updated,
e.g. new experience of that bit of state space (so focus on relevant states), or

their value functions are changing a lot

e Updated value function used immediately in estimates of other states’ value
function

Gillian Hayes RL Lecture 7 29th January 2007

° School of _e
== informatics

Summary

e Policy Evaluation: backups without a max, find the value function for a given
policy

e Policy Improvement: make policy greedy wrt value function (if only locally)
e Policy Iteration = Policy Evaluation + Policy Improvement
e Value lteration: backups with a max, i.e. Bellman optimality equation

e Asynchronous Dynamic Programming: avoids exhaustive sweeps through state
space when updating V'

e Generalised Policy lteration: Interleaving policy evaluation and improvement
at any granularity

Gillian Hayes RL Lecture 7 29th January 2007

L] School of _ e
—= informatics

e We may not care about some states — maybe we never expect to visit them —
so make their backup priority very low

We can consider interleaving the policy evaluation and policy improvements steps
at many granularities.... This is called Generalised Policy Iteration

Gillian Hayes RL Lecture 7 29th January 2007

° School of _e
= Informatics

e Bootstrapping: updating estimates based on other estimates

e Full backups: each backup takes into account all the states one can reach
from the current state in calculating the backup

Read Sutton and Barto Chapter 4

Gillian Hayes RL Lecture 7 29th January 2007

