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Reinforcement Learning

• Framework

• Rewards, Returns

• Environment Dynamics

• Components of a Problem

• Values and Action Values, V and Q

• Optimal Policies

• Bellman Optimality Equations
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Framework Again

State/

Where is boundary

and environment?
between agent
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POLICY

VALUE FUNCTION

ENVIRONMENT

Task: one instance of an RL problem – one problem set-up

Learning: how should agent change policy?

Overall goal: maximise amount of reward received over time
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Goals and Rewards
Goal: maximise total reward received

Immediate reward r at each step. We must maximise expected cumulative reward:

Return = Total reward Rt = rt+1 + rt+2 + rt+3 + · · · + rτ

τ = final time step (episodes/trials) But what if τ = ∞?

Discounted Reward

Rt = rt+1 + γrt+2 + γ2rt+3 + · · ·

=
∞∑

k=0

γkrt+k+1

0 ≤ γ < 1 discount factor → discounted reward finite if reward sequence {rk}
bounded

γ = 0: myopic γ → 1: agent far-sighted. Future rewards count for more
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Dynamics of Environment
Choose action a in situation s: what is the probability of ending up in state s′?

Transition probability

P a

ss′
= Pr{st+1 = s′ | st = s, at = a}

s

a

r

s’

BACKUP DIAGRAM

STOCHASTIC
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If action a chosen in state s and subsequent state reached is s′ what’s the
expected reward?

Ra

ss′
= E{rt+1 | st = s, at = a, st+1 = s′}

If we know P and R then have complete information about environment – may
need to learn them
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Ra
ss′ and ρ(s, a)

Reward functions

Ra

ss′
expected next reward given current state s and action a and next state s′

ρ(s, a) expected next reward given current state s and action a

ρ(s, a) =
∑

s′

P a

ss′
Ra

ss′

Sometimes you will see ρ(s, a) in the literature, especially that prior to 1998 when
S+B was published.

Sometimes you’ll also see ρ(s). This is the reward for being in state s and is
equivalent to a “bag of treasure” sitting on a grid-world square (e.g. computer
games – weapons, health).
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Sutton and Barto’s Recycling Robot 1

• At each step, robot has choice of three actions:

– go out and search for a can
– wait till a human brings it a can
– go to charging station to recharge

• Searching is better (higher reward), but runs down battery. Running out of
battery power is very bad and robot needs to be rescued

• Decision based on current state – is energy high or low

• Reward is no. cans (expected to be) collected, negative reward for needing
rescue

This slide and the next based on an earlier version of Sutton and Barto’s own slides from a

previous Sutton web resource.
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Sutton and Barto’s Recycling Robot 2
S={high, low} A(high) = {search, wait} A(low) = {search, wait, recharge}
Rsearch expected no. cans when searching Rwait expected no. cans when waiting
Rsearch > Rwait

recharge

search

wait

search wait

1,0

α 1,R

1,R
wait β ,−3 ,R

search

wait
,R

search,Rsearch

high low

1− β

α
1−
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Values V
Policy π maps situations s ∈ S to (probability distribution over) actions a ∈ A(s)

V-Value of s under policy π is V π(s) = expected return starting in s and
following policy π

V π(s) = Eπ{Rt | st = s} = Eπ{
∞∑

k=0

γkrt+k+1 | st = s}

Convention:
open circle = state
filled circle = action

s

r

s’

a
π

P
a
ss’

(s,a)

BACKUP DIAGRAM FOR V(s)
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Action Values Q
Q-Action Value of taking action a in state s under policy π is Qπ(s, a) =
expected return starting in s, taking a and then following policy π

Qπ(s, a) = Eπ{Rt | st = s, at = a}

= Eπ{
∞∑

k=0

γkrt+k+1 | st = s, at = a}

What is the backup diagram?
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Recursive Relationship for V

V π(s) = Eπ{Rt | st = s}

= Eπ{

∞∑

k=0

γkrt+k+1 | st = s}

= Eπ{rt+1 + γ

∞∑

k=0

γkrt+k+2 | st = s}

=
∑

a

π(s, a, )
∑

s′

P a

ss′
[Ra

ss′
+ γEπ{

∞∑

k=0

γkrt+k+2 | st+1 = s′}]

=
∑

a

π(s, a, )
∑

s′

P a

ss′
[Ra

ss′
+ γV π(s′)]

This is the BELLMAN EQUATION. How does it relate to backup diagram?
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Recursive Relationship for Q

Qπ(s, a) =
∑

s′

P a

ss′
[Ra

ss′
+ γ

∑

a′

π(s′, a′)Q(s′, a′)]

Relate to backup diagram
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Grid World Example
Check the V’s comply with Bellman Equation

From Sutton and Barto P. 71, Fig. 3.5

3.3 8.8 4.4

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

5.3 1.5A

A’

B

B’+10
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Relating Q and V

Qπ(s, a) = Eπ{
∞∑

k=0

γkrt+k+1 | st = s, at = a}

= Eπ{rt+1 + γ

∞∑

k=0

γkrt+k+2 | st = s, at = a}

=
∑

s′

P a

ss′
[Ra

ss′
+ γEπ{

∞∑

k=0

γkrt+k+2 | st+1 = s′}]

=
∑

s′

P a

ss′
[Ra

ss′
+ γVπ(s′)]
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Relating V and Q

V π(s) = Eπ{
∞∑

k=0

γkrt+k+1 | st = s}

=
∑

a

π(s, a)Qπ(s, a)
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Optimal Policies π∗

An optimal policy has the highest/optimal value function V ∗(s)

It chooses the action in each state which will result in the highest return

Optimal Q-value Q∗(s, a) is reward received from executing action a in state s

and following optimal policy π∗ thereafter

V ∗(s) = max
π

V π(s)

Q∗(s, a) = max
π

Qπ(s, a)

Q∗(s, a) = E{rt+1 + γV ∗(st+1) | st = s, at = a}
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Bellman Optimality Equations 1
Bellman equations for the optimal values and Q-values

V ∗(s) = max
a

Qπ
∗

(s, a)

= max
a

Eπ∗{Rt | st = s, at = a}

= max
a

Eπ∗{rt+1 + γ
∑

k

γkrt+k+2 | st = s, at = a}

= max
a

E{rt+1 + γV ∗(st+1) | st = s, at = a}

= max
a

∑

s′

P a

ss′
[Ra

ss′
+ γV ∗(s′)]
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Q∗(s, a) = E{rt+1 + γ max
a′

Q∗(st+1, a
′) | st = s, at = a}

=
∑

s′

P a

ss′
[Ra

ss′
+ γ max

a′

Q∗(s′, a′)]

Value under optimal policy = expected return for best action from that state.
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Bellman Optimality Equations 2
If dynamics of environment Ra

ss′
, P a

ss′
known, then can solve equations for V ∗ (or

Q∗).

Given V ∗, what then is optimal policy? I.e. which action a do you pick in state
s?

The one which maximises expected rt+1 + γV ∗(st+1), i.e. the one which gives
the biggest

∑
s′

(instant reward + discounted future maximum reward)∗P a

ss′

So need to do one-step search
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Bellman Optimality Equations 2 20

There may be more than one action doing this → all OK

All GREEDY actions

Given Q∗, what’s the optimal policy?

The one which gives the biggest Q∗(s, a), i.e. in state s, you have various Q

values, one per action. Pick (an) action with largest Q.
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Assumptions for Solving Bellman Optimality
Equations

1. Know dynamics of environment P a

ss′
, Ra

ss′

2. Sufficient computational resources (time, memory)

BUT

Example: Backgammon

1. OK

2. 1020 states ⇒ 1020 equations in 1020 unknowns, nonlinear equations (max)

Often use a neural network to approximate value functions, policies and models
⇒ compact representation

Optimal policy? Only needs to be optimal in situations we encounter – some
very rarely/never encountered. So a policy that is only optimal in those states we
encounter may do
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Components of an RL Problem

Agent, task, environment

States, actions, rewards

Policy π(s, a) → probability of doing a in s

Value V (s) → number – Value of a state

Action value Q(s, a) – Value of a state-action pair

Model P a

ss′
→ probability of going from s → s′ if do a

Reward function Ra

ss′
from doing a in s and reaching s′

Return R → sum of future rewards

Total future discounted reward rt+1 + γrt+2 + γ2rt+3 + · · · =
∑

∞

k=0
rt+k+1γ

k

Learning strategy to learn... (continued)
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• value – V or Q

• policy

• model

sometimes subject to conditions, e.g. learn best policy you can within given time

Learn to maximise total future discounted reward
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RL BuzzwordsAgent, task, environment

Actions, situations/states, rewards

Policy

Environment dynamics and model

Return, total reward, discounted rewards

Value function V, action-value function Q

Optimal value functions and optimal policy

Complete and incomplete environment information

Transition probabilities and reward function

Model-based and model-free learning methods

Temporal and spatial credit assignment

Exploration/exploitation tradeoff
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