
Reinforcement Learning

Lecture 13

Gillian Hayes

19th February 2007

Gillian Hayes RL Lecture 13 19th February 2007

1

Using Q-Learning: Asterix and Obelix

• Asterix and Obelix robots

• Q-learning

• Statistical Clustering
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A Q-Learning Example

• Obelix – Mahadevan and Connell (IBM)

• Asterix – John Hoar (DAI MSc 1996)

• A behaviour-based robot learning to push a box

• Learns behaviours by trial and error: Q-learning

• Rewards/punishments for doing right/wrong thing

• Simulator and real robot

• Reimplemented (here) on Asterix

How to frame a problem so that we can use reinforcement learning with it
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Obelix Robot
• Actions: move forward, turn left, turn hard left, turn right, turn hard right

• Sensors: sonar (35ft, 20degrees, time to echo), infrareds (4 inches),
motorcurrent (increases if robot stuck)

• Can measure distance to object to nearest 1/4 inch, but use range bins: near/far

• Blind spot: object permanence a problem – if the robot turns through a small
angle, small object disappear until the next sensor picks them up

• State space 218 = 262144 states: is this too many?

• Find box, push it, don’t get stuck.

• How to organise the RL problem? In one monolithic block? In submodules that
learn parts of the task?

See diagrams of Obelix, its environment, its sonars, its sensor quantisation
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Architecture for Obelix: Subsumption Architecture
• Behaviour-based modules: unwedger, pusher, finder
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subsumes =

has priority over

sensors motors

Finder

Pusher

Unwedger

• Each module gets own reward

• 3 copies of Q-learning algorithm
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• Priorities: Unwedger > Pusher > Finder (= default behaviour)

• Modules have applicability predicates

• So combine BB modules with RL, rather than using a monolithic controller
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Applicability Predicates

Under what sensor conditions is a module applicable?

e.g.

PUSHER APPLICABLE
if BUMP sensors on

return TRUE
else if BUMP recently activated (perceptual

return TRUE aliasing)

else return FALSE

Current state + recent activation allows perceptual aliasing to be dealt with (a
bump = false state often occurs after pushing the box; box bounces away from
bump sensor)

• If > 1 applicable, priority ordering decides which gets a chance to learn
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• Default behaviour = box finder (so no applicability predicate needed)

• Perceptual aliasing – same state needs different actions depending on context,
e.g. BUMP

See diagram of control flow
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Reward Functions Ra
ss′

One per module

e.g. BOX FINDER REWARD(old state, action, new state)

if action = FORWARD and
FRONT NEAR SONAR(new state) facing

object

return 3
else if ¬ FRONT NEAR SONAR(new state)

return -1
else return 0
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Procedure:

What modules are applicable?

Arbitration ⇒ module chosen

Reward calculated

Module learns

• Robot gets plan sketch for box-pushing. It fill in details.
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Learning:Q(s, a)

∆Qt(st, at) = α[rt+1 + γ max
a

Qt(st+1, a) − Qt(st, at)]

Always update using maximum Q value available from next state: then Q ⇒ Q∗,
optimal action-value function

Problem

OBELIX has 18 sensory bits and 262144 states.
Can’t experience all in reasonable time

Solution

Generalise:
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1. ‘Virtual’ sensors combine readings from real ones ⇒ 9 bits

2. Don’t just update current state, update all ‘similar’ states.

Take weighted Hamming distance between state vectors – weights give relative
importance of bits, e.g. bump/stuck = 5, near = 2, far = 1.

Structural credit assignment
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Task
So, given

• states

• actions

• behaviour-based task modules and priority ordering

• applicability and reward functions

learn

• Transfer function from state ⇒ action which maximises cumulative expected
reinforcement
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1. Initialise Q(s, a) for all x, a to 0, α = 0.5, γ = 0.9

2. Do forever:

• Observe current state st

• 90% of time choose an action that has maximum Q(st, at), 10% choose
some other action. Action is at.

• Carry out action at in world. New state is st+1

• Immediate reward for carrying out a in st is rt+1

• Update Q: ∆Q = α[rt+1 + γmaxaQ(st+1, a) − Q(st, at)] for state st and
all states within weighted Hamming distance of 2 from st
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Alternative Generalisation Method – Statistical
Clustering

Weighted Hamming distance OK for noisefree simulations, but use statistical
clustering for noisy real world environment

For each action

A set of clusters of states with similar Qs

Cluster: < pbit1, pbit2, . . . pbitn, Qc >

pbit1 is p(bit1 | s ∈ c), i.e. probability that bit 1 = 1 given that the state s is in
the cluster c – you can get this from counting over all the states that are already
in the cluster and from sensor statistics. Qc is the Q value of the cluster

To be in the cluster, a state’s bits must match those of the cluster closely and
the state must have a Q value very close to that of the cluster and differing from
it by no more than δ
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Updating Clusters and Action Selection

New cluster: if difference between current state and existing clusters is too big,
start a new cluster

Merge two clusters: if close enough merge and update new cluster statistics

Action selection: match state against all clusters, all actions. Calculate its
Q-value for each action in turn:

Q(s, a) =
P

clustersforthataction Qcluster×weight
P

weight

where weight = match probability for the state being in that cluster.

Pick action with the biggest Q(s, a)

Scales better than Hamming
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Experiments
Hamming compared with:

• random agent: chooses actions randomly

• hand-coded: give it the reward for each action that the learning agent would
have got

• statistical clustering

on

• simulator

• robots

Results

• learning curves

• learning agents often as good as hand-coded
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Issues
Asterix: a good internal learning curve doesn’t always correspond with good
behaviour in world

• push walls, not boxes

• find boxes, then move away

• zoom around world as quickly as possible

Difficulty: designing a good reward function. Learner will ALWAYS take
advantage....

So always evaluate on real task, even if learning curves increase properly
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RL for Real World Problems
Slow

Noisy sensors – can states be reidentified?

Generalisation – how to do it? 40% of processor time spent matching states to
clusters in Asterix

Actions – reliability and repeatability

Monolithic vs. modular architecture

Specifying reward function difficult

But may be easier than writing controller

Most of effort goes into setting up the problem so that the RL algorithm can be
applied.

BUT: if we get the right level of abstraction it can be done
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